
SMARTIAN: Enhancing Smart Contract Fuzzing
with Static and Dynamic Data-Flow Analyses

Jaeseung Choi∗
KAIST

jschoi17@kaist.ac.kr

Gustavo Grieco
Trail of Bits

gustavo.grieco@trailofbits.com

Doyeon Kim∗†
LINE Plus Corporation

doyeon1017@linecorp.com

Alex Groce
Northern Arizona University

alex.groce@nau.edu

Soomin Kim
KAIST

soomink@kaist.ac.kr

Sang Kil Cha
KAIST

sangkilc@kaist.ac.kr

Abstract—Unlike traditional software, smart contracts have the
unique organization in which a sequence of transactions shares
persistent states. Unfortunately, such a characteristic makes
it difficult for existing fuzzers to find out critical transaction
sequences. To tackle this challenge, we employ both static and
dynamic analyses for fuzzing smart contracts. First, we statically
analyze smart contract bytecodes to predict which transaction
sequences will lead to effective testing, and figure out if there is a
certain constraint that each transaction should satisfy. Such infor-
mation is then passed to the fuzzing phase and used to construct
an initial seed corpus. During a fuzzing campaign, we perform a
lightweight dynamic data-flow analysis to collect data-flow-based
feedback to effectively guide fuzzing. We implement our ideas on
a practical open-source fuzzer, named SMARTIAN. SMARTIAN
can discover bugs in real-world smart contracts without the
need for the source code. Our experimental results show that
SMARTIAN is more effective than existing state-of-the-art tools
in finding known CVEs from real-world contracts. SMARTIAN
also outperforms other tools in terms of code coverage.

I. INTRODUCTION

Bugs in smart contracts can cause catastrophic failures
because smart contracts often handle digital assets worth
millions of dollars. In the notorious DAO attack in 2016 [23],
for example, the attacker exploited a reentrancy bug in a smart
contract to steal 3.6 million ether, which was worth 70 million
USD at that time.

Understandably, there has been surging research interest in
automatically finding bugs in smart contracts [24], [32], but
to our knowledge, all the existing tools we found suffer from
one or more of the following issues.

First, the tools neglect to emit test cases needed for coverage
measurement. Many tools do not produce replayable test
cases, and output incomplete information about transactions.
Moreover, some tools focus only on bug-triggering test cases
and ignore test cases that increase coverage. This makes it
hard to quantitatively compare the coverage achievement of
testing tools (see §II-C). Second, research papers in the field
do not always provide their implementation or publish data
sets used in the evaluation. This problem has been noted in

*Co-first authors.
†This work was done when the author was at KAIST.

another recent study [25]. Third, many of the tools focus only
on a small set of bug classes, which significantly limits their
usability. For instance, Echidna [31] can only detect assertion
failures and check custom properties.

All these observations suggest a need for a practical testing
tool that is (1) able to produce replayable test cases, (2)
publicly available, and (3) able to find a set of various bug
classes. Although fuzzing is a plausible technique to achieve
these requirements, none of the current smart contract fuzzers
satisfies them all.

Nevertheless, those are not the only requirements; there is
a critical technical challenge in current fuzzers in handling
stateful transactions. Smart contracts differ from traditional
applications in that they take in a sequence of transactions as
input while maintaining a persistent state. The main challenge
in smart contract testing is to find a transaction sequence that
can change the persistent state of the target contract in a
critical way. Unfortunately, traditional code coverage feedback
may not be effective enough for identifying such important
transaction sequences. That is, two transaction sequences may
achieve exactly the same branch coverage, although only one
of them can change the persistent state in a meaningful way.

Previous fuzzers partly handle this problem either by ran-
domly varying transaction orders [31], [53], [70] or by resort-
ing to machine learning [35]. However, none of the approaches
is deterministic, and thus, all of them are prone to potential
failure in detecting crucial transaction sequences.

In this paper, we address this challenge by leveraging both
static and dynamic analyses on EVM bytecode. The key
intuition is that the significance of transaction sequences can
be determined by the data dependencies between functions
and persistent state variables. Therefore, analyzing data flows
of persistent state variables can help in identifying critical
transaction sequences.

In particular, we use both static and dynamic analyses for
(1) generating an initial seed pool; and (2) evolving the seed
pool at runtime. First, we statically analyze the target smart
contracts (in the form of raw EVM bytecode) to figure out
meaningful transaction orders, which can effectively modify
the persistent states, as well as their sender constraints. Each

transaction sequence obtained in this step is deemed to be a
useful seed for fuzzing. Note this is a preprocessing step that
runs only once per smart contract.

Next, we run fuzzing with the initial seeds obtained by the
preprocessing step. However, we note that our fuzzer also
needs to be able to discern useful transaction sequences at
runtime to effectively update the seed pool. Thus, we introduce
data-flow-based feedback, a novel feedback mechanism that
carefully monitors dynamic data flows between state variables
during a fuzzing campaign.

We design and implement SMARTIAN, an open-sourced
smart contract fuzzer that can systematically generate critical
transaction sequences for the smart contract under test with
both static and dynamic analyses. We evaluated SMARTIAN
on a benchmark including 500 real-world Ethereum smart
contracts we collected based on their popularity and size.
SMARTIAN outperformed existing tools in terms of both code
coverage and bug-finding ability. Furthermore, we found 211
bugs in real-world smart contracts. All these results suggest
that our analyses enable SMARTIAN to find bugs in smart
contracts effectively.

In summary, we make the following contributions.
1) We propose a novel static analysis technique for gener-

ating initial seed pools, which is complementary to any
existing smart contract fuzzers.

2) We present data-flow-based feedback, a novel and sys-
tematic feedback mechanism for fuzzing smart contracts.

3) We present SMARTIAN, a grey-box fuzzer for smart
contracts, which is (1) able to generate replayable test
cases; (2) open-sourced; (3) able to detect a superset of
bug classes handled by existing fuzzers; and (4) able
to systematically generate critical transaction sequences
with the help of both static and dynamic analyses.

4) We make our benchmark public, which includes 500
non-trivial, real-world smart contracts.

II. BACKGROUND

In this section, we first introduce basic terms to understand
the rest of the paper. Next, we summarize classes of well-
known smart contract bugs. Finally, we present a comparative
study on existing bug-finding tools for smart contracts.

A. Basic Terminologies

Ethereum [26] is the most popular blockchain-based dis-
tributed computing platform. A smart contract is essentially a
collection of code and data that is located on the Ethereum
blockchain. Ethereum Virtual Machine (EVM) is an execution
environment for running smart contracts. Generally, contract
code is first written in a high-level language like Solidity [10],
but eventually, it must be compiled into bytecode to run on
EVM. A smart contract maintains storage, which is essentially
a key-value store for holding persistent state variables. Storage
is different than memory or stack as its contents are non-
volatile. To execute a function defined in the contract, a user
needs to make a transaction to the contract. A transaction
contains information about a function call, such as parameter

TABLE I
BUG CLASSES SUPPORTED BY SMARTIAN.

ID Bug Name Description

AF Assertion
Failure

The condition of an assert statement is not satis-
fied [2].

AW Arbitrary
Write

An attacker can overwrite arbitrary storage data by
accessing a mismanaged array object [12].

BD Block State
Dependency

Block states (e.g. timestamp, number) decide ether
transfer of a contract [36], [44].

CH Control-flow
Hijack

An attacker can arbitrarily control the destination of
a JUMP or DELEGATECALL instruction [1], [36].

EL Ether Leak A contract allows an arbitrary user to freely retrieve
ether from the contract [54].

FE Freezing
Ether†

A contract can receive ether but does not have any
means to send out ether [36], [54].

IB Integer Bug Integer overflows or underflows occur, and the result
becomes an unexpected value.

ME Mishandled
Exception

A contract does not check for an exception when
calling external functions or sending ether [36], [44].

MS Multiple
Send

A contract sends out ether multiple times within one
transaction. This is a specific case of DoS [5].

RE Reentrancy A function in a victim contract is re-entered and leads
to a race condition on state variables [44].

RV Requirement
Violation‡

The condition of a require statement is not satis-
fied [8].

SC Suicidal
Contract

An arbitrary user can destroy a victim contract by
running a SELFDESTRUCT instruction [54].

TO Tranasaction
Origin Use

A contract relies on the origin of a transaction (i.e.
tx.origin) for user authorization [3].

† While other bugs deal with safety properties, FE concerns a liveness property. As
it is unnatural to find the absence of behavior with testing, we make this oracle
optional, and provide a command-line option to enable it.

‡ Since the official document [11] recommends to use require for validating
program inputs, it is debatable whether this is a bug. Thus, we make this optional.

values. Both a contract and a user are assigned a unique
address, and can have a certain amount of digital cash called
ether. A transaction is also used to transfer ether between
contracts and users.

A deployer is a special user who initially publishes a smart
contract on the blockchain network. Typically, the address of
the deployer is saved in the storage during the initialization
phase (see the example in Figure 1). The stored address can
then be used to discern between the deployer and regular users.
Although it is desirable for testing tools to be able to send
transactions from both deployers and normal users, we are
not aware of any existing fuzzer that can systematically select
proper users during a fuzzing campaign.

B. Smart Contract Bug Classes

Previous research defines their own bug classes with differ-
ent terminologies, and there is no general consensus among
them. Thus, we study and summarize them in Table I. SMAR-
TIAN supports the detection of all these bugs (see §IV-C3).

First, we investigated bug classes handled by existing state-
of-the-art fuzzers [31], [35], [36], [43], [53], [66], [70]. We
included all the bugs from these fuzzers. In addition, we
examined more previous work on smart contracts [4], [9],
[44], [52], [54] and selected bugs that can be detected without
excessive false positives.

As a result, we identified 13 types of bugs listed in Table I.
While some papers make finer classifications of bugs, we tried

TABLE II
COMPARISON OF EXISTING BUG-FINDING TOOLS FOR SMART CONTRACTS.

Tool Kind Replayable Public Available Byte Bug Oracle
Test Casea Tool Benchmark Code AF AW BD CH EL FE IB ME MS RE RV SC TO

MadMax [30] Static analyzer 7 3 7 3 7 7 7 7 7 7 3 7 3 7 7 7 7
Remix [57] Static analyzer 7 3 7 7 3 7 3 7 7 7 7 3 3 3 7 3 3
SASC [73] Static analyzer 7 7 7 7 7 7 3 7 7 7 7 7 7 3 7 7 3
Securify [64], [65] Static analyzer 7 3 7 3 7 3 3 3 3 3 7 3 3 3 7 3 3
Slither [27] Static analyzer 7 3 7 7 7 3 3 3 3 3 7 3 3 3 7 3 3
SmartCheck [62] Static analyzer 7 3 7 7 7 7 3 7 7 3 3 3 7 3 7 7 3
Vandal [15] Static analyzer 7 3 7 3 7 7 7 7 3 7 7 3 7 3 7 3 3
VeriSmart [60] Static analyzer 7 3 3 7 7 7 7 7 3 7 3 7 7 7 7 7 7
Zeus [38] Static analyzer 7 7 3 7 7 7 3 7 7 7 3 3 7 3 7 7 3
Maian [54] Symbolic executor 7 3 7 3 7 7 7 7 3 3 7 7 7 7 7 3 7
Manticore [50] Symbolic executor 3 3 3 3 3 7 3 3 3 7 3 3 7 3 7 3 3

Mythril [52] Symbolic executor 4b 3 7 3 3 3 3 3 3 7 3 3 3 3 7 3 3
Osiris [63] Symbolic executor 7 3 3 3 3 7 3 7 7 7 3 7 7 3 7 7 7
Oyente [44] Symbolic executor 7 3 7 3 3 7 3 7 7 3 3 7 7 3 7 7 7

sCompile [16] Symbolic executor ?c 7 7 3 7 7 7 7 3 3 7 7 7 3 7 3 7
teEther [39] Symbolic executor 4 3 7 3 7 7 7 3 3 7 7 7 7 7 7 3 7
ContractFuzzer [36] Fuzzer 7 3 3 3 7 7 3 3 7 3 7 3 7 3 7 7 7
ContraMaster [66], [67] Fuzzer 7 3 3 7 7 7 7 7 7 7 3 3 7 3 7 7 7
Echidna [31] Fuzzer 3 3 3 7 3 7 7 7 7 7 7 7 7 7 7 7 7
Harvey [70], [71] Fuzzer ? 7 7 3 3 3 7 7 7 7 3 3 3 3 3 7 7
ILF [35] Fuzzer 3 3 7 3 7 7 3 3 3 3 7 3 7 3 7 3 7
Reguard [43] Fuzzer ? 7 7 3 7 7 7 7 7 7 7 7 7 3 7 7 7

sFuzz [53] Fuzzer 7 d 3 7 3 7 7 3 3 7 3 3 3 7 3 7 7 7
F SMARTIAN Fuzzer 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

a Does the tool generate test cases that contain complete information needed to reproduce the transactions, enabling the measurement of coverage achievement?
b Prints to the terminal only about test cases that trigger bugs, and ignore test cases that increase coverage.
c We cannot identify the fact as the tool is not publicly available.
d Older version of sFuzz could generate replayable test cases, but this functionality disappeared in the latest version.

to merge closely related bug classes into one. For instance,
ContractFuzzer [36] distinguishes Timestamp Dependency and
Block Number Dependency, but we merge them into Block
State Dependency. Also, we consider Gasless Send [36] as a
specific case of Mishandled Exception.

We note that existing tools implement different bug oracles.
Thus, in our evaluation, we carefully consider this difference
to make fair comparisons (see §V-C).

C. Existing Tools

We studied 23 different tools for finding smart contract bugs,
and summarized them in Table II.

The third column indicates whether a tool can generate
test cases that contain complete information to reproduce the
transactions. While it is natural for static analyzers to not
generate test cases, we found that surprisingly many testing
tools do not generate replayable test cases. Some tools, such as
Oyente, simply emit terse information about inputs and do not
output complete data needed to reproduce transactions. This
makes it infeasible to reproduce bugs found or to measure
coverage achievements. As a result, one can evaluate the
tools only by looking at their textual reports, which are often
prone to errors. For example, [53] states that Oyente reports
infeasible paths as feasible.

The fourth and fifth columns respectively represent whether
a tool and a benchmark are publicly available. Although it is
crucial to publicize benchmarks for reproducing research [25],
only a few of those tools make their benchmarks public.

The sixth column shows whether a tool runs at a bytecode
level. As Ethereum deploys smart contracts in the form of
bytecode, this enables testing smart contracts in the blockchain
even if the source code is not available.

Finally, the rest of the columns present bug oracles em-
ployed by each tool. While all the other tools focus on a
specific set of bug oracles, SMARTIAN handles everything as
shown in the table.

1 contract C {
2 // State variables in the storage.
3 address owner = 0;
4 uint private stateA = 0;
5 uint private stateB = 0;
6 uint CONST = 32;
7

8 function C() { // Constructor
9 owner = msg.sender;

10 }
11 function f(uint x) {
12 if (msg.sender == owner) { stateA = x; }
13 }
14 function g(uint y) {
15 if (stateA % CONST == 1) {
16 stateB = y - 10;
17 }
18 }
19 function h() {
20 if (stateB == 62) { bug(); }
21 }
22 }

Fig. 1. Example smart contract.

III. OVERVIEW

In this section, we first present a motivating example to
describe a unique challenge in smart contract fuzzing. We then
briefly describe how SMARTIAN addresses this challenge by
employing both static and dynamic analyses.

A. Motivating Example

Smart contracts impose a unique challenge to fuzzing due
to their intrinsic structure where multiple transactions are
interconnected to each other with persistent state variables.

Consider our motivating example in Figure 1, which has
the constructor C, along with the three functions f, g, and h.
While our system operates on EVM bytecode, the example
code is written in Solidity for ease of explanation.

The constructor C, which simply stores the address of
the deployer in the storage, runs once when the deployer
instantiates the contract. This is indeed a commonly found

pattern as it provides means to distinguish the deployer from
regular users. Note that msg.sender is an expression that
evaluates to the current sender’s address at runtime.

The contract has a bug in h, which can be triggered only if
stateB is 62. For example, one can trigger the bug with a
transaction sequence [f(33),g(72),h()]. Note that the
three transactions should be made in the exact order to trigger
the bug. Moreover, f should be sent by the deployer.

At a first glance, the conditions in each function may
not seem so hard to satisfy. For example, one can penetrate
the condition in Line 15 with the probability of 1/32 by
randomly mutating stateA. The condition in Line 20 is
relatively harder to solve, but recent advances in grey-box
fuzzing provide practical solutions to it [13], [18], [20], [53].
In our implementation, we adopt grey-box concolic testing
technique from Eclipser [20].

However, finding this bug is still challenging as we need
to generate the transactions in the correct order. For instance,
let us assume that we have a sequence [f(*),h(),g(*)]
as a seed1, where * can be any value. Any mutation attempt
on the function arguments will not trigger the bug because
h cannot observe any difference for stateB. Therefore,
our fuzzer needs to have a transaction sequence such as
[f(*),g(*),h()] in the seed pool to find the bug.

One may argue that grey-box fuzzers are able to dis-
cover such a critical transaction sequence by randomly
mutating transaction orders. However, it is not as trivial
as it seems. Even if we manage to generate a sequence
[f(*),g(*),h()] by randomly trying different transaction
orders, we cannot realize that this is indeed a meaningful test
case because traditional code coverage is not sensitive enough.
For instance, consider two transaction sequences SA =
[f(33),g(0),h()] and SB = [f(33),h(),g(0)],
which achieve the same branch coverage. If SB was already
in our test case pool, our fuzzer would have no chance to add
SA to the seed pool, even though it is the critical one.

Preliminary experiments: Despite the simplicity of the
example contract in Figure 1, none of the existing fuzzers
that we tested was able to find the bug. Specifically, we ran
three open-sourced smart contract fuzzers, Echidna, ILF, and
sFuzz, for one hour each. On the other hand, SMARTIAN was
able to find the bug within just a few seconds.

B. Our Approach

To address the aforementioned challenges, SMARTIAN
leverages both static and dynamic analyses. Figure 2 outlines
the overall architecture of SMARTIAN. At a high level, our
system runs in three major steps: (1) INFOGATHER, (2)
SEEDPOOLINIT, and (3) DATAFLOWFUZZ.

1) INFOGATHER: First, SMARTIAN takes in the EVM
bytecode under test as input and runs a static analysis to
collect useful data-flow facts to guide both SEEDPOOLINIT
and DATAFLOWFUZZ. Specifically, for each function in the
contract, SMARTIAN figures out which state variables are

1In this paper, we interchangeably use the terms “transaction sequence”,
“test case”, and “seed”.

EVM Bytecode
01011011001
11101010011
11000010101

Static Analysis

Dynamic Analysis

INFOGATHER
(§ IV-A)

SEEDPOOLINIT
(§ IV-B)

DATAFLOWFUZZ
(§ IV-C)

Bugs

Facts

Sender info.

Seeds

Data-flow-based feedback

Fig. 2. SMARTIAN architecture.

defined and used by the function, and whether the function
compares the transaction sender address against the deployer
address. From our example contract, our static analysis will
gather the following facts.

• stateA is defined by f and used by g.
• stateB is defined by g and used by h.
• owner is defined by C to be the deployer’s address.
• owner is used by f to check the transaction sender.

Since our analysis directly runs on the low-level EVM byte-
code, gathering such information is not trivial (see §IV-A).

2) SEEDPOOLINIT: Based on the gathered information,
SMARTIAN predicts which transaction sequences are likely to
lead to meaningful exploration, and consider them as initial
seeds. Specifically, SMARTIAN realizes that f must precede
g to explore execution paths affected by stateA. Similarly,
it infers that g must be called before h to change the value
of stateB and explore more paths in h. Finally, it figures
out that f must be executed by the deployer in order to pass
the sender check we identified in the first step. Consequently,
SMARTIAN creates S0 = [f(0),g(0),h()] as the initial
seed for fuzzing, while making sure that the sender of f is the
deployer. The transaction argument is set to 0 by default. See
§IV-B for the detailed algorithm for seed initialization.

3) DATAFLOWFUZZ: While initializing the seed pool with
meaningful transaction sequences can increase the probability
to find the bug, this does not immediately solve the whole
challenge. Ideally, we will first randomly mutate the given
seed S0 and obtain a new seed S1 = [f(33),g(0),h()],
which can reach Line 16. If we can identify S1 as a critical
test case, we will add it to the test case pool and later apply
the aforementioned grey-box concolic testing to figure out the
proper argument value of g that triggers the bug (see §IV-C).

Unfortunately, as we emphasized in §III-A, we may fail to
discern such critical intermediate seeds if we merely employ
existing code coverage feedback. Assume that we accidentally
generated S2 = [f(33),g(0)] prior to S1, and added S2

to the test case pool. This is possible because our fuzzer can
randomly add, remove, or reorder transaction(s) from a given
seed. Once S2 is added to the test case pool, S1 will no longer
be considered interesting because it provides no coverage gain
over the existing seeds {S0, S2}.

To mitigate this problem, we employ a dynamic data-flow
analysis to collect data-flow-based feedback. At a high level,

our approach considers the data-flow coverage as fuzzing
feedback along with the branch coverage used by Eclipser [20]
That is, we adopt dynamic instrumentation to observe data
flows that occur in the given transaction sequence at runtime,
and use them as feedback too. With S1, there is a data flow
from the definition of stateB in Line 16 to the use of
stateB in Line 20. However, neither S0 nor S2 have this
data flow. Based on this, we can conclude that S1 discovers
an interesting program behavior that is not observed in S0 nor
S2. We detail our approach in §IV-C.

4) Impact of Data-flow Analyses: With the help of both
static and dynamic analyses, SMARTIAN can find the bug
from the above example within just five seconds on our
machine. Meanwhile, when we disabled our analyses (see
§V-B), SMARTIAN failed to find the bug in one hour.

C. Our Contribution over Previous Work

Our technical contribution is twofold: (1) we are the first
in systematically generating seeds for smart contract fuzzing;
and (2) we use data-flow-based coverage to effectively guide
smart contract fuzzing.

1) Seed Generation: Previous fuzzers suffer from system-
atically generating proper transaction sequences. For instance,
Echidna and sFuzz generate sequences at random.

Harvey [70] partly addresses this challenge with runtime
heuristics. First, Harvey forcefully mutates state variables to
find which functions are affected by them. It then randomly
prepends other transactions to those functions. However, this
method is not scalable to complex contracts with a large
number of functions. Moreover, Harvey may fail to distinguish
constants, e.g., CONST in our motivating example, from vari-
ables, and spend its fuzzing budget to change such constants.

ILF [35] generates transaction sequences based on a
machine-learning model obtained by symbolically executing
smart contracts. While ILF can potentially find meaningful
transaction sequences via learned models, the result is not
deterministic as it is based on statistical reasoning. Moreover,
our approach is complementary to ILF as we directly analyze
the semantics of the contract to generate seeds.

2) Data-flow-based feedback: The use of data-flow graph
coverage has been previously studied in data-flow testing [61].
However, none of the existing fuzzers except ContraMas-
ter [67] had employed data-flow coverage as fuzzing feedback.
While data-flow-based feedback shares the same key intuition
with ContraMaster, ContraMaster uses data-flow coverage to
decide whether to perform mutation on transaction orders.
Meanwhile, we use the feedback to evaluate the generated
seeds and decide whether to put them in the seed pool.

IV. DESIGN

This section presents the design details of SMARTIAN. Re-
call from §III, SMARTIAN operates in three major steps: INFO-
GATHER (§IV-A), SEEDPOOLINIT (§IV-B), and DATAFLOW-
FUZZ (§IV-C).

A. Information Gathering (INFOGATHER)

INFOGATHER analyzes the given EVM bytecode and
returns a 4-tuple 〈Funcs,Defs,Uses,SenderChecks〉
where:

• Funcs is a set of identified functions.
• Defs is a map from each identified function to the state

variables defined by the function.
• Uses is a map from each identified function to the state

variables used by the function.
• SenderChecks is a set of functions that includes a

sender-checking routine.

It starts by constructing a Control-Flow Graph (CFG) from
the given EVM bytecode. It internally disassembles EVM
instructions, and lifts them into an Intermediate Representation
(IR). It then runs a constant propagation analysis on the IR to
figure out the destinations of control-flow transfer instructions,
e.g., JUMP, and identifies functions including constructors. We
note that this step also includes resolving call edges within the
contract, to enable an inter-procedural analysis. Finally, it runs
the main analysis based on abstract interpretation [22].

Our main static analysis computes abstract values stored
in the stack and the memory in a flow- and context-sensitive
manner [49]. Tracking stack values is important because EVM
is a stack-based machine that pushes instruction operands to
the stack [26], [69]. Following memory values is also critical
because these operands are often loaded from the memory, too.
Our ultimate goal here is to figure out which state variables
are defined and used by each function. To distinguish which
state variable is used (or defined), we check which value is
used as a key for SLOAD (or SSTORE) instruction.

To approximate values, we use a product domain [58] that
entails three different domains. First, we employ the lifted
integer domain [58] to trace constants. This is because smart
contracts use a hard-coded unique constant as a key to access
state variables of primitive data types, e.g., uint. Second,
we use a variation of the lifted integer domain to abstract
the output of hash instruction SHA3. This is because smart
contracts access state variables of compound data types, e.g.,
mapping, through a computed hash value as a key. With both
domains, we can track which specific state variable is accessed
for every program point, and thus can update both Defs and
Uses accordingly.

The last component of the product domain is the taint
domain for tracking the flow of the deployer’s address (recall
from §III-B). With this domain, we compute SenderChecks
by analyzing the following two conditions. First, we check if
the constructor of a smart contract saves the deployer’s address
into the storage. Second, we see if a sender’s address, which
is returned by a CALLER instruction, flows into a conditional
branch, and gets compared with the deployer’s address. Note
both flows can be easily tracked with traditional static taint
analysis. If both conditions hold, then we put the function
containing the conditional into SenderChecks.

Algorithm 1: Deriving Function Call Orders.
1 function GenSequences(Funcs, Defs, Uses)
2 seqs← ∅
3 works← InitWorks({[f] | f ∈ Funcs,Defs(f) 6= ∅})
4 while works 6= ∅ do
5 s← works.pop()
6 nogain← true
7 for f in Funcs do
8 if DataFlowGain(s || [f], Defs, Uses) then
9 works.push(s || [f])

10 nogain← false

11 if nogain then
12 seqs← seqs ∪ {s}

13 return seqs

B. Seed Pool Initialization (SEEDPOOLINIT)

To generate initial seeds, SMARTIAN first derives useful
function call orders, based on the information gathered from
INFOGATHER, and then generates concrete transaction se-
quences based on the orders.

1) Deriving Useful Call Orders: Algorithm 1 illustrates the
decision of function call orders. It takes in as input Funcs,
Defs, and Uses obtained from INFOGATHER, and outputs a
set of function sequences.

In Line 3, we initialize the worklist (works) with singleton
sequences containing each function in Funcs. We ignore
functions that do not define any state variable as they cannot
affect the persistent state. Next, we pull a sequence s out of
the worklist (Line 5), and creates new sequences by appending
each function in Funcs to s. We then examine each of the
generated sequences with DataFlowGain to decide which
sequence covers previously unseen data flows (Line 7–8).
Line 9 pushes such sequences to the worklist, and internally
removes redundant entries for greater efficiency.

Specifically, DataFlowGain statically approximates
function-level data flows by collecting triples 〈f1, v, f2〉 from
a given sequence, where (1) f1 and f2 are functions that
appear in the sequence, (2) f1 defines v, and (3) f2 uses that
v. It returns true if a previously unseen triple is found from
the sequence.

We repeatedly extend sequences in the worklist as long as
a new data flow is observed. If a sequence produces no gain
by extending it, we finalize the sequence by adding it to the
output set (Line 11–12).

2) Generating Seeds: We now turn the generated function
sequences into transaction sequences by concretizing their
contents, which works mainly in two steps.

First, for every function in each transaction, we decide
whether each function belongs to SenderChecks. If so, we
set the sender of the transaction as the deployer. Otherwise,
we randomly choose the sender (either deployer or a user).

Second, we need to initialize the function arguments of
each transaction. Here, we consider the amount of ether to
transfer as an additional argument, too. SMARTIAN internally
represents each argument as a byte stream. When the target

contract ships with its ABI specification, we leverage it to
set the argument types as well as the length of the byte
streams accordingly. When the ABI specification does not
exist, SMARTIAN will simply set the length of each byte
stream to a predefined maximum value. Correctly inferring
data types of function arguments in the absence of ABI is
beyond the scope of this paper, and we leave it as future work.

C. Data-Flow-Based Fuzzing (DATAFLOWFUZZ)

With the generated initial seed pool, SMARTIAN iteratively
selects one and mutates it to generate new test cases (§IV-C1).
SMARTIAN then evaluates the usefulness of the newly gen-
erated test cases by running the smart contract under test
with each test case (§IV-C2). During each execution, our bug
oracles check whether it is buggy (§IV-C3).

1) Mutation Methodologies: SMARTIAN employs two com-
plementary strategies for mutating seeds. One is random
mutation, and the other is grey-box concolic testing from [20].
SMARTIAN alternates between them to achieve synergy.

First, our random mutation strategy runs at both the se-
quence level and the transaction level. Sequence-level mutation
consists of the following operations: (1) inserting a new
transaction for a random function; (2) removing a random
transaction; and (3) swapping two random transactions. When
inserting a transaction, we refer to SenderChecks gathered
from the static analysis and use it to decide the sender, as in
§IV-B. Transaction-level mutation mainly modifies arguments
of each transaction. We leverage classic mutation operators
widely used in grey-box fuzzers, such as bit-flipping muta-
tion [72]. Besides, we randomly mutate the sender of the
transaction, too.

However, it is well known that random mutation can eas-
ily get stuck on conditional branches such as magic value
checks [13], [18], [41]. Eclipser [20] addresses this challenge
by introducing the grey-box concolic testing technique, which
operates similarly to traditional concolic testing [29], [59], but
without SMT solving [51] or expensive extra instrumentation.

2) Data-flow-based Feedback: Recall from §III-A, previous
code coverage feedback is not enough to discern interest-
ing seeds during a fuzzing campaign. To overcome this,
SMARTIAN introduces data-flow-based feedback in addition
to the traditional code coverage feedback. That is, SMARTIAN
considers a seed as interesting when it exhibits a previously
unseen data flow or covers previously unvisited code.

To collect data flows, we dynamically instrument the EVM
bytecode by modifying an EVM emulator in order to monitor
the storage accesses during the execution. Particularly, we
capture a dynamic data flow with a def-use chain. Let p1

v−→ p2
be a def-use chain over a state variable v defined in a program
point p1, and used in a program point p2. We can then
represent def-use chains from the example in Figure 1 as
follows. SA yields def-use chains 12

stateA−−→ 15 and 16
stateB−−→ 20,

while SB only yields 12
stateA−−→ 15. Therefore, SMARTIAN can

recognize that SA exhibits an interesting program behavior
not presented by SB . In the actual implementation, we use an

instruction address as a program point pi, and use the key of
the storage as a state variable v.

Recall that we also check for data flows during the seed pool
initialization in §IV-B. Note that in Algorithm 1 we statically
approximated the data flows at the function level. Meanwhile,
in fuzzing, we trace data flows that actually take place, and
calculate them at instruction-level granularity. That is, we first
statically analyze data flows to decide promising transaction
sequences that are likely to reveal more dynamic data flows
during the fuzzing. Then, we employ concrete and more fine-
grained data flows as feedback at the fuzzing phase.

3) Bug Oracles: Here, we summarize our bug oracle im-
plementation for 13 classes of bugs supported by SMARTIAN.
Again, we modify the EVM emulator to implement these bug
oracles. Thus, our runtime instrumentation is responsible for
both collecting data-flow-based feedback and detecting bugs
during the execution.
AF At the bytecode level, an assertion failure corresponds

to the execution of an INVALID instruction. Therefore,
we can precisely detect AF by checking if an INVALID
instruction is executed. We note that compilers also
automatically insert assert statements to prevent errors
such as division by zero. We consider the failures from
these compiler-inserted assertions as AF, too.

BD We leverage dynamic taint analysis to check if a block
state can affect an ether transfer. We trace both direct
and indirect taint flows for this. We first taint the returns
of instructions that acquire the state of a block (e.g.
TIMESTAMP, NUMBER). Then, we monitor if the tainted
value flows into the operands of a CALL or JUMPI.

CH First, we raise an alarm if a normal user can set the
destination contract of a DELEGATECALL into an arbi-
trary user contract. Second, we also report an alarm if
the destination of a JUMP instruction is manipulatable.

EL We employ an oracle similar to that of Mythril [52],
which checks if a normal user can gain ether by sending
transactions to the contract. However, this is prone to false
positives, because some contracts allow the deployer to
hand over the ownership of the contract to another user.
In such contracts, it is an intended behavior that a user
can withdraw the contract’s balance when the deployer
allows to. To avoid such false positives, we report alarms
only when the transaction sequence does not have any
preceding transaction from the deployer.

IB We monitor ADD, SUB, MUL instructions to check if
they cause an integer over/underflow. If so, we taint the
resulting value, and perform a dynamic taint analysis to
check whether the tainted value is used to determine the
amount of ether to transfer, or is used to update the state
variables. This is to avoid raising alarms on benign integer
over/underflows. For example, without this taint analysis,
we will raise an alarm on a safe code snippet ‘if(x +
y < x) revert();’.

ME We run a taint analysis to make sure that the return value
of a CALL instruction flows into a predicate of a JUMPI
instruction. If there is a return value that is not used by

a JUMPI, we report an alarm.
MS We detect multiple ether transfers taking place in a single

transaction.
RE We first monitor if there is a cyclic call chain during

an ether transfer, as ContractFuzzer [36] or sFuzz [53]
does. In addition, we use taint analysis to identify state
variables that affect this ether transfer, similarly to as we
did for BD. Then, we report RE if such variables are
updated after the transfer takes place.

RV We check for the execution of a REVERT instruction,
which corresponds to a requirement violation.

SC We check if a normal user can execute SELFDESTRUCT
instruction and destroy the contract. Similarly to EL,
we reduce false positives by filtering out test cases that
have any preceding transaction from the deployer in the
sequence.

TO We taint the return value of ORIGIN instruction, and
check if it flows into the predicate of a JUMPI instruction.

For the rest of the bug classes, we implemented the same
bug oracle as ContractFuzzer [36] (FE) and Harvey [70] (AW).

D. Implementation

To implement our static analyzer, we used B2R2 [37] as
a front-end to parse and disassemble EVM bytecode. The
main logic of static analysis (§IV-A) is written in 1,053
source lines of F# code. The fuzzing component of SMAR-
TIAN (§IV-C1) is implemented by extending Eclipser [19] to
operate with EVM and transaction sequences, and is composed
of 3,112 source lines of F# code. We used Nethermind
EVM [7] for deploying contracts and emulating transactions
with dynamic instrumentation. Specifically, we added 979
lines of C# code to Nethermind to implement data-flow-
based feedback (§IV-C2) as well as our bug oracles (§IV-C3).
We make all our source code and benchmarks public at:
https://github.com/SoftSec-KAIST/Smartian.

V. EVALUATION

In this section, we answer the following research questions.

RQ1. Can our analyses improve the fuzzing effectiveness
of SMARTIAN? (§V-B)

RQ2. Can SMARTIAN find known bugs more effectively
compared to existing state-of-the-art tools? (§V-C)

RQ3. How does SMARTIAN perform on a large-scale
benchmark? (§V-D)

A. Experimental Setup

1) Our Environment: We ran all our experiments on an
Ubuntu 18.04 server machine equipped with two Intel E5-2699
v4 (2.2 GHz) CPUs and 512 GB of main memory. We used
Docker 20.10.3 for our experiments, and used one container
to run a tool on a single contract. We spawned at most 72
containers in parallel, and assigned a single CPU core and 6
GB of memory to each container. To compile contracts, we
used solc-0.4.25.

https://github.com/SoftSec-KAIST/Smartian

TABLE III
BENCHMARKS USED.

ID Source Used For Avg. SD† Num. of
SLoC SLoC Contracts

B1 Verismart [60] RQ1, RQ2 136 48 58
B2 SmartBug [25] RQ2 51 75 72
B3 Etherscan RQ3 331 277 500

† Standard Deviation.

2) Comparison Targets: We selected two fuzzers and
two symbolic executors as our comparison targets. To select
fuzzers, we first filtered open-sourced fuzzers that are pub-
lished in top conferences, and obtained ContractFuzzer, ILF,
and sFuzz. We chose ILF and sFuzz over ContractFuzzer,
since the two tools respectively outperformed ContractFuzzer
in their experiments [35], [53]. To select symbolic executors,
we initially applied the same criteria and obtained Oyente
and teEther as a result. However, we found that Oyente
reports unfeasible paths as executable, according to [53]. Also,
teEther supports only a small set of bug classes, making the
comparison against sFuzz difficult. Thus, we chose Mythril
and Manticore instead, as they support various bug classes.

For each of the selected tools, we added functionality to
emit replayable test cases if the tool does not already have
it. Also, we modified their code to save all the test cases that
increase code coverage. We publicize the modified versions of
the tools in GitHub.

3) Benchmarks: We used three distinct benchmarks for
our experiments. Table III summarizes them. We make these
benchmarks public as well, in order to support open science.

B1. First, we used the benchmark from VeriSmart [60], which
consists of 58 real-world contracts. Each of the contracts
is assigned a CVE for an integer bug (IB). Note that the
authors of VeriSmart originally collected 60 contracts, but
they confirmed that two of the CVEs were not real bugs.

B2. While B1 is a realistic benchmark with known vul-
nerabilities, all the assigned CVEs are for IB. Thus,
we constructed B2 that contains more bug classes, by
extracting contracts from SmartBug [25]. In particular,
we imported contracts that have block state dependency
(BD), mishandled exception (ME), or reentrancy (RE), as
these bug classes are supported by all of our comparison
targets (§V-A2). Then, we performed preprocessing such
as filtering out contracts that have any argument in the
constructor. This is because some of the tools we selected
for comparison did not run properly on such contracts. As
a result, we obtained a total of 72 contracts that contain
13 BD, 50 ME, and 19 RE. Note that a single contract
can have multiple classes of bugs here.

B3. This benchmark comprises 500 popular and complex
smart contracts obtained from Etherscan [6], which is
an online platform that provides code and statistics of
Ethereum smart contracts. We first downloaded contracts
that have more than 30,000 transactions, and filtered out
contracts that do not compile with the solc version

0

10

20

30

40

50

0 10 20 30 40 50 60
Time (min.)

To
ta

l #
 o

f C
VE

s
fo

un
d

w/ static & dynamic analyses

w/ static analysis only

w/ dynamic analysis only

w/o any analysis

Fig. 3. Impact of our data-flow analyses on B1.

we used. Then, we filtered out contracts that have any
constructor argument, to make the benchmark usable
by as many tools as possible. Finally, we sorted the
remaining contracts based on their bytecode size, and
selected the 500 largest contracts in order to gather both
popular and complex contracts.

B. Impact of Our Analyses

Do our analyses help SMARTIAN find bugs more effec-
tively? How much overhead do they introduce? We answer
these questions by comparing the effectiveness of SMARTIAN
on B1 with and without our analyses. We used B1 here because
each contract in the benchmark contains a previously known
bug, which serves as ground truth for our evaluation. Also, all
the contracts in B1 are real-world contracts, whereas some of
the contracts in B2 are artificially created toy programs.

To assess the impact of both static (§IV-A) and dynamic
(§IV-C) analyses, we ran SMARTIAN in four different modes:
(1) with both of the analyses, (2) only with the static analysis,
(3) only with the dynamic analysis, and (4) without any
analysis. We ran with each mode for one hour on B1, and
repeated the experiment for five times.

1) Impact on Bug Finding: We first measured the impact of
our analyses in terms of bug finding. We say our tool found the
ground truth bug in each contract if it can pinpoint the exact
program point for the assigned CVE. This is important because
each contract may also have integer overflows or underflows
that are irrelevant to the assigned CVE. Moreover, some of
them can be benign, as we discussed in §IV-C3.

Figure 3 compares the number of unique bugs found over
time with the four different modes. We note that there is a
significant difference in finding deep bugs at the later stage of
fuzzing. On average, we were able to find about 22% more
unique bugs with our analyses than without them (p-value <
0.05 from Mann-Whitney U-Test). This result confirms that
there are real-world smart contract bugs, which can only be
found by considering stateful transaction sequences, and our
analyses indeed help in finding them.

2) Impact on Code Coverage: We also measured the
number of executed instructions with and without using our
analyses. As a result, we found that turning on both static and
dynamic analyses helped in covering 1% more instructions

Smartian sFuzz Manticore Mythril

0

10

20

30

0 10 20 30 40 50 60
Time (min.)

To
ta

l #
 o

f C
VE

s
fo

un
d

0K

20K

40K

60K

80K

100K

0 10 20 30 40 50 60
Time (min)

In
st

ru
ct

io
n

C
ov

er
ag

e

Fig. 4. Comparison against state-of-the-art tools on the subset of B1.

on average. While the coverage gap is not significant, recall
that there was a significant difference in the number of bugs
found. This observation aligns with the key motivation of our
work: while the traditional code coverage feedback can be
effective in guiding fuzzers to increase coverage, it may not
be enough to trigger bugs when a stateful transaction sequence
is required.

3) Overhead of Our Analyses: We also evaluated how
much overhead is imposed by applying our analyses. For
the contracts in B1, the static analysis took less than two
seconds on average, and took five seconds in the worst case.
This is indeed a negligible overhead for fuzzing. We also
measured the overhead of our dynamic data-flow analysis, i.e.,
data-flow-based feedback. Specifically, we collected test cases
generated from our previous experiments, and replayed them
with and without the data-flow-based feedback computation.
As a result, we observed that computing data-flow-based feed-
back incurred only 2.7% overhead in terms of execution time.
Thus, we conclude that our analyses incur reasonably small
overhead, and despite the overhead, they allow SMARTIAN to
find more bugs and to achieve more coverage.

Answer to RQ1. Both static and dynamic analyses can
effectively guide fuzzing to find more bugs. When used
together, the analyses enable SMARTIAN to find 22% more
bugs in our benchmark.

C. Comparison against Existing Tools

Next, we compare SMARTIAN against state-of-the-art tools
that we selected in §V-A2. For this, we measured the bug-
finding effectiveness as well as coverage achievement of each
tool. To measure coverage achievement, we replayed the test
cases generated by each tool. Recall from §V-A2 that we
modified the tools to emit all the test cases that can increase
coverage, in a replayable format.

1) Comparison on B1: We first compare SMARTIAN with
other testing tools on B1. As we mentioned in §V-A, some of
our comparison targets did not properly operate on contracts
with constructor arguments. Therefore, we excluded such
contracts and obtained a subset of B1, which comprises 32
contracts. We ran the tools for one hour on each contract, and

repeated the experiment five times to compute the average. To
measure the bug-finding effectiveness, we counted the number
of ground truth bugs found by each tool. As in §V-B, we
checked whether the tool can report the exact program point
that corresponds to the CVE assigned for an integer bug (IB).

Figure 4 shows the comparison result between SMARTIAN
and other tools. The left-hand-side plot presents the number
of CVEs found over time, whereas the right-hand-side plot
presents the instruction coverage over time. Note that ILF is
not included in this comparison, because it does not support
the detection of IB (see Table II).

As the figure indicates, SMARTIAN constantly outperformed
other tools in terms of bug-finding effectiveness. SMARTIAN
found 5.8×, 4.8×, and 2.1× more ground truth bugs (CVEs)
than sFuzz, Manticore, and Mythril, respectively. This result
was consistent over the five times of repeated experiments (p-
value < 0.01 from Mann-Whitney U-Test for all the tools).
Moreover, there was only one bug that SMARTIAN missed but
one of the other tools could find.

Also, SMARTIAN covered more instructions than other
tools throughout the whole fuzzing campaign. SMARTIAN
covered 1.8×, 3.9×, and 1.1× more instructions than sFuzz,
Manticore, and Mythril, respectively. While Mythril was the
closest to SMARTIAN in terms of code coverage, it still found
significantly fewer bugs than SMARTIAN. This implies that
Mythril failed to modify the state variables in a critical way
while it was able to cover enough code.

Difference in Bug Oracles. As we discussed in §II-B,
each tool implements its own oracle for the same bug class.
This may affect the bug-finding effectiveness of each tool.
For instance, sFuzz only monitors additions and subtractions
to detect integer overflows, and ignores multiplications. This
makes sFuzz prone to false negatives.

To tackle this problem, we ran additional experiments by
modifying SMARTIAN to have the same oracle logic with the
comparison target. For example, we replaced our IB oracle
with the oracle of sFuzz, and then compared the modified
SMARTIAN against sFuzz. This way, we can compare the bug-
finding effectiveness of each tool without being affected by
the inconsistency of oracles. It turned out that SMARTIAN
outperforms other tools even after aligning the IB oracle with
them. SMARTIAN still found 4.0×, 3.8×, and 2.1× more
CVEs than sFuzz, Manticore, and Mythril, respectively.

We further investigated the result to compare the bug
oracles. First, when we replaced our bug oracle with the oracle
of sFuzz and Manticore, SMARTIAN found 31% and 21%
fewer CVEs. When we modified SMARTIAN’s oracle to match
with that of Mythril, SMARTIAN found 1% more CVEs, but it
raised 46% more alarms instead. Thus, we conclude that our
IB oracle in §IV-C3 is most appropriate for this benchmark.

2) Comparison on B2: We now compare our system against
other tools on B2, which we constructed from SmartBug
benchmark [25]. We selected contracts that were labeled with
block state dependency (BD), mishandled exception (ME),
or reentrancy (RE). However, we found that the labels were
incomplete for some of the contracts. For instance, a contract

Smartian sFuzz Manticore Mythril ILF

0

20

40

60

80

0 10 20 30 40 50 60
Time (min.)

To
ta

l #
 o

f B
ug

s
fo

un
d

0K

10K

20K

30K

40K

50K

60K

0 10 20 30 40 50 60
Time (min)

In
st

ru
ct

io
n

C
ov

er
ag

e

Fig. 5. Comparison against state-of-the-art tools on B2.

TABLE IV
NUMBER OF TP AND FP ALARMS RAISED BY EACH TOOL ON B2.

Bug ID
SMARTIAN ILF sFuzz Manticore Mythril

TP FP TP FP TP FP TP FP TP FP

BD 11 0 0 0 10 0 6 5 8 0
ME 48 0 10 0 29 6 18 0 46 0
RE 19 0 15 2 5 20 19 3 19 38

that was classified to have ME often contained RE, as well.
Thus, we manually investigated the contracts and labeled them
again. Then, we ran each tool for one hour on each of the
contracts in B2. To measure the bug-finding effectiveness, we
checked whether the tool can report the bugs labeled on each
contract.

Figure 5 illustrates the result of this comparison. We present
the number of bugs found over time on the left side, and
instruction coverage over time on the right side. The results
are averaged over five times of repeated experiments.

The figure shows that SMARTIAN is able to find more bugs
than other tools. When compared to fuzzers, SMARTIAN found
3.1× and 1.8× more bugs than ILF and sFuzz, respectively.
SMARTIAN also outperformed symbolic executors, by finding
1.8× and 1.1× more bugs than Manticore and Mythril, re-
spectively. The result was consistent over the five repetitions
(p-value < 0.01 from Mann-Whitney U-Test for all the tools).
In addition, there were only two bugs that were missed by
SMARTIAN but found by any other tool.

Moreover, SMARTIAN constantly covered more instructions
than other tools, too. In particular, SMARTIAN covered respec-
tively 1.4× and 1.7× more instructions than ILF and sFuzz.
Also, it covered 3.1× more instructions than Manticore and
1.2× more instructions than Mythril.

We also count the number of false positive alarms raised
by each tool and summarize them in Table IV, along with the
number of found bugs (i.e. true positives). The table shows
that SMARTIAN not only has the highest recall, but it also
has the highest precision for this benchmark. Especially, other
tools suffered from a high false positive rate for RE bugs.
This is mainly because these tools do not properly consider
the storage access pattern of the target contract, and simply

TABLE V
NUMBER OF BUGS FOUND BY SMARTIAN ON B3.

Bug ID Description # of Bugs Reported # TP # FP

AW Arbitrary Write 0 0 0
BD Block State Dependency 26 20 6
CH Control Hijack 0 0 0
EL Ether Leak 5 3 2
IB Integer Bug 170 170 0
ME Mishandled Exception 2 2 0
MS Multiple Send 5 5 0
RE Reentrancy 0 0 0
SC Suicidal Contract 0 0 0
TO Transaction Origin Use 11 11 0

Total - 219 211 8

check whether there is a call to an external contract.
Difference in Bug Oracles. Again, we reimplemented

the bug oracles of SMARTIAN to match with other tools’
oracles, to compare the bug-finding effectiveness under the
same condition. In particular, we modified our BD, ME, and
RE oracles to align with those of other tools. SMARTIAN still
prevailed other tools after the alignment of the oracles. The
modified SMARTIAN found 2.8× more bugs than ILF and
1.7× more bugs than sFuzz. Also, it found 1.9× more bugs
than Manticore and 1.1× more bugs than Mythril.

Answer to RQ2. SMARTIAN is more effective in finding
bugs compared to existing state-of-the-art tools. SMARTIAN
finds 1.1–5.8× more bugs than our comparison targets.

D. Large-Scale Study

Now that we have evaluated the comparative performance of
SMARTIAN, we now turn our attention to the scalability of our
system. Specifically, we ran SMARTIAN on B3, which consists
of 500 popular and large contracts we gathered from Etherscan
(see §V-A3). We ran SMARTIAN on each contract for one hour,
and manually investigated the reported alarms to classify them
into true and false alarms. We did not include other tools in this
experiment because implementing other tools’ bug oracles in
SMARTIAN as we did in §V-C, requires significant engineering
effort. Instead, we focus on the scalability of SMARTIAN here.

Table V summarizes the result. Note that we do not report
FE and RV here, for the reasons we discussed in Table I.
In addition, we also omit AF found by SMARTIAN. While
SMARTIAN found hundreds of true positive AF, it is debatable
whether they can be considered as serious bugs, so we do not
include AF in the table. After excluding these bug classes,
SMARTIAN reported a total of 219 bug alarms. Out of the 500
contracts, 72 contracts were flagged to have at least one of
these alarms. We manually inspected the alarms and confirmed
that 96.3% of them were true positives. Recall from §IV-C3,
this was possible because SMARTIAN employs precise bug
oracles to reduce false alarms.

We confirmed that some of the bugs found by SMARTIAN
had similar patterns to the CVEs in B1. Some of the bugs
could even cause contract users or owners to unexpectedly lose
their assets. We also found that most of the bugs were caused
by poor software engineering practices. Thus, we conclude

that SMARTIAN can indeed find meaningful bugs in real-world
smart contracts.

Answer to RQ3. SMARTIAN is effective in finding various
kinds of bugs from a large-scale benchmark. SMARTIAN
could find 211 bugs from 500 complex real-world contracts
we collected.

E. Threats to Validity

First, we performed our experiments on a limited set of
benchmarks. We used two benchmarks (B1 and B2) containing
known bugs, and another benchmark (B3) that consists of large
and popular real-world contracts. We showed the effectiveness
of our system on these benchmarks, but other benchmarks
may yield different results. We open-source our code so that
SMARTIAN can be further evaluated in other work.

Another threat to validity is related to the manual processes
included in our evaluation. For instance, we manually labeled
bugs to each contract in B2, and manually classified the alarms
that SMARTIAN reported from the contracts in B3. Although
we tried our best to carefully inspect the contract code, we
might have erroneously concluded whether the bug indeed
exists or not. We also make our dataset public, to enable cross-
checks from other researchers.

VI. DISCUSSION

Due to the over-approximating nature of static analysis,
data-flow facts gathered from our INFOGATHER step (§IV-A)
may contain spurious data-flows that cannot actually occur in
runtime. If such false positives are prevalent in the analysis
result, our static analysis may even degrade the fuzzing per-
formance. However, the evaluation in §V-B empirically shows
that our analysis is precise enough to guide fuzzing effectively.
In the future, we may further improve the static analysis
precision and study how it affects the fuzzing effectiveness.

SMARTIAN currently inherits the limitations of Eclipser,
such as lack of handling non-linear branch conditions. Adopt-
ing other grey-box technologies and recent advances in the
field, such as [17], [42], [46], [47], to complement SMARTIAN
would be a promising direction for future research.

Although SMARTIAN is specifically designed for fuzzing
smart contracts, we believe the idea of leveraging data-flow
analyses in fuzzing can be applied to other areas as well. For
instance, generating the sequence of system calls is a critical
problem in kernel fuzzing [21], [33], [55]. We leave it as future
work to apply our idea to other domains.

VII. RELATED WORK

Fuzzing has become a de facto standard technique for
finding security bugs [14], [34], [40], [45], and there has been
significant research effort on adopting fuzzing in the domain
of smart contracts, too. Recall from §III-C, our contribution
is unique in that we are the first in adopting both static
and dynamic analyses to systematically deal with stateful
transactions of smart contracts for fuzzing.

ContractFuzzer [36] is the first academically developed
fuzzer for smart contracts. Since it is a black-box fuzzer, it

has difficulties achieving high code coverage. Echidna [31]
checks a set of user-defined invariant rules to detect bugs. An
analyst should embed these rules within the contract source
code itself. On the other hand, SMARTIAN does not require
any human intervention.

Harvey [70] is a commercial (closed-source) fuzzer. It
employs a heuristic referred to as the aggressive mode, which
directly mutates state variables to figure out the dependencies
between functions. In contrast, SMARTIAN systematically ad-
dresses this by statically analyzing the semantics of code. The
same authors recently enhanced Harvey by employing a static
analyzer called Bran [71], which can guide grey-box fuzzing
towards target locations. Bran is orthogonal to our work, and
SMARTIAN can also benefit from it.

sFuzz [53] incorporates AFL [72] with the idea of branch
distance feedback used in search-based testing [48] in order
to explore hard-to-reach branches. However, sFuzz does not
directly handle the stateful transaction problem we address in
this paper. ILF leverages machine learning to effectively gen-
erate transaction sequences. It is orthogonal to our technique,
and our analysis can complement ILF, too.

There are several fuzzers outside the domain of smart
contracts, which utilize data flow analysis [18], [28], [56],
[68] to figure out which input bytes need to be mutated or
which values should be used for the mutation. Our work is
orthogonal to them as we are using data-flow information to
find meaningful transaction sequence orders.

VIII. CONCLUSION

We studied the current limitation of smart contract test-
ing tools, and identified several design and technical issues.
Specifically, we tackled the problem of effectively handling
multiple stateful transactions of smart contracts, which leads to
the introduction of combined static and dynamic analysis tech-
niques for generating seeds and updating the seed pool during
a fuzzing campaign. Our study showed that the proposed
techniques incur negligible overhead while enabling effective
fuzzing in terms of both code coverage and bug finding.
We also compared SMARTIAN against the various state-of-
the-art testing tools on a carefully designed benchmark, and
confirmed the effectiveness of it. We publicize both our tool
and benchmarks to boost future research.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable com-
ments and suggestions. We also thank Josselin Feist and
Felipe Manzano for their helpful advice on smart contract
testing. This work was supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2021-0-
01332, Developing Next-Generation Binary Decompiler).

REFERENCES

[1] “Arbitrary jump with function type variable,” https://swcregistry.io/docs/
SWC-127.

[2] “Assertion failure,” https://swcregistry.io/docs/SWC-110.
[3] “Authorization through tx.origin,” https://swcregistry.io/docs/SWC-115.

https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-115

[4] “Decentralized application security project,” https://dasp.co/.
[5] “Dos with failed call,” https://swcregistry.io/docs/SWC-113.
[6] “Etherscan,” https://etherscan.io/.
[7] “Nethermind,” https://github.com/NethermindEth/nethermind.
[8] “Requirement violation,” https://swcregistry.io/docs/SWC-123.
[9] “Smart contract weakness classification registry,” https://swcregistry.io/.

[10] “Solidity documentation,” https://docs.soliditylang.org.
[11] “Solidity expressions and control structures,” https://docs.soliditylang.

org/en/v0.4.25/control-structures.html.
[12] “Write to arbitrary storage location,” https://swcregistry.io/docs/

SWC-124.
[13] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,

“REDQUEEN: Fuzzing with input-to-state correspondence,” in Proceed-
ings of the Network and Distributed System Security Symposium, 2019.

[14] M. Böhme, V. J. M. Manès, and S. K. Cha, “Boosting fuzzer efficiency:
An information theoretic perspective,” in Proceedings of the Interna-
tional Symposium on Foundations of Software Engineering, 2020, pp.
678–689.

[15] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” 2018.

[16] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “sCompile: Crit-
ical path identification and analysis for smart contracts,” in Proceedings
of the International Conference on Formal Engineering Methods, 2019,
pp. 286–304.

[17] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in Proceedings of the
ACM Conference on Computer and Communications Security, 2018, pp.
2095–2108.

[18] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in Proceedings of the IEEE Symposium on Security and Privacy, 2018,
pp. 855–869.

[19] J. Choi, J. Jang, C. Han, and S. K. Cha, “Eclipser,” https://github.com/
SoftSec-KAIST/Eclipser, 2019.

[20] ——, “Grey-box concolic testing on binary code,” in Proceedings of the
International Conference on Software Engineering, 2019, pp. 736–747.

[21] J. Choi, K. Kim, D. Lee, and S. K. Cha, “NTFuzz: Enabling type-aware
kernel fuzzing on windows with static binary analysis,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2021, pp. 1973–1989.

[22] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the ACM Symposium on Principles of
Programming Languages, 1977, pp. 238–252.

[23] P. Daian, “Analysis of the dao exploit,” https://hackingdistributed.com/
2016/06/18/analysis-of-the-dao-exploit/, 2016.

[24] M. di Angelo and G. Salzer, “A survey of tools for analyzing ethereum
smart contracts,” in Proceedings of the IEEE International Conference
on Decentralized Applications and Infrastructures, 2019, pp. 69–78.

[25] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,” in
Proceedings of the International Conference on Software Engineering,
2020, pp. 530–541.

[26] Ethereum, “Ethereum whitepaper,” https://ethereum.org/en/whitepaper/.
[27] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework

for smart contracts,” in Proceedings of the International Workshop on
Emerging Trends in Software Engineering for Blockchain, 2019, pp. 8–
15.

[28] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“GREYONE: Data flow sensitive fuzzing,” in Proceedings of the
USENIX Security Symposium, 2020, pp. 2577–2594.

[29] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated ran-
dom testing,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2005, pp. 213–223.

[30] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “MadMax: Surviving out-of-gas conditions in ethereum smart
contracts,” in Proceedings of the ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Appli-
cations, 2018, pp. 116:1–116:27.

[31] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
Effective, usable, and fast fuzzing for smart contracts,” in Proceedings
of the International Symposium on Software Testing and Analysis, 2020,
pp. 557–560.

[32] A. Groce, J. Feist, G. Grieco, and M. Colburn, “What are the actual
flaws in important smart contracts (and how can we find them)?” in
International Conference on Financial Cryptography and Data Security,
2020.

[33] H. Han and S. K. Cha, “IMF: Inferred model-based fuzzer,” in Pro-
ceedings of the ACM Conference on Computer and Communications
Security, 2017, pp. 2345–2358.

[34] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-aware code
generation to find vulnerabilities in javascript engines,” in Proceedings
of the Network and Distributed System Security Symposium, 2019.

[35] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2019, pp. 531–548.

[36] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the International
Conference on Automated Software Engineering, 2018, pp. 259–269.

[37] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha, “B2R2: Building
an efficient front-end for binary analysis,” in Proceedings of the NDSS
Workshop on Binary Analysis Research, 2019.

[38] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Proceedings of the Network and Distributed
System Security Symposium, 2018.

[39] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automati-
cally exploit smart contracts,” in Proceedings of the USENIX Security
Symposium, 2018, pp. 1317–1333.

[40] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of the
International Conference on Automated Software Engineering, 2018, pp.
475–485.

[41] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: Program-state based binary fuzzing,” in Proceedings of the
International Symposium on Foundations of Software Engineering, 2017,
pp. 627–637.

[42] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and Y. Liu,
“Cerebro: Context-aware adaptive fuzzing for effective vulnerability de-
tection,” in Proceedings of the International Symposium on Foundations
of Software Engineering, 2019, pp. 533–544.

[43] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and A. W. Roscoe, “ReGuard:
Finding reentrancy bugs in smart contracts,” in Proceedings of the
International Conference on Software Engineering: Companion (ICSE-
Companion), 2018, pp. 65–68.

[44] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2016, pp. 254–269.

[45] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

[46] V. J. M. Manès, S. Kim, and S. K. Cha, “Ankou: Guiding grey-
box fuzzing towards combinatorial difference,” in Proceedings of the
International Conference on Software Engineering, 2020, pp. 1024–
1036.

[47] B. Mathis, R. Gopinath, and A. Zeller, “Learning input tokens for
effective fuzzing,” in Proceedings of the International Symposium on
Software Testing and Analysis, 2020, pp. 27–37.

[48] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[49] A. Møller and M. I. Schwartzbach, “Static program analysis,”
https://cs.au.dk/ amoeller/spa/, 2019.

[50] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in Proceedings
of the International Conference on Automated Software Engineering,
2019, pp. 1186–1189.

[51] L. D. Moura and N. Bjørner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–
77, 2011.

[52] B. Mueller, “Smashing ethereum smart contracts for fun and actual
profit,” in Proceedings of the HITB Security Conference, 2018.

[53] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the International Conference on Software Engineering, 2020, pp. 778–
788.

https://dasp.co/
https://swcregistry.io/docs/SWC-113
https://etherscan.io/
https://github.com/NethermindEth/nethermind
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/
https://docs.soliditylang.org
https://docs.soliditylang.org/en/v0.4.25/control-structures.html
https://docs.soliditylang.org/en/v0.4.25/control-structures.html
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-124
https://github.com/SoftSec-KAIST/Eclipser
https://github.com/SoftSec-KAIST/Eclipser
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://ethereum.org/en/whitepaper/

[54] I. Nikoliundefined, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at scale,” in
Proceedings of the Annual Computer Security Applications Conference,
2018, pp. 653–663.

[55] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS fuzzer
seed selection with trace distillation,” in Proceedings of the USENIX
Security Symposium, 2018, pp. 729–743.

[56] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proceedings of
the Network and Distributed System Security Symposium, 2017.

[57] Remix, “Ethereum ide and tools for the web,” https://github.com/
ethereum/remix, 2017.

[58] X. Rival and K. Yi, Introduction to Static Analysis: An Abstract
Interpretation Perspective. MIT Press, 2020.

[59] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2005, pp. 263–272.

[60] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VeriSmart: A highly precise
safety verifier for ethereum smart contracts,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2020, pp. 1678–1694.

[61] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, “A survey on
data-flow testing,” ACM Computing Surveys, vol. 50, no. 1, pp. 1–35,
2017.

[62] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
ethereum smart contracts,” in Proceedings of the IEEE/ACM Inter-
national Workshop on Emerging Trends in Software Engineering for
Blockchain, 2018, pp. 9–16.

[63] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 664–676.

[64] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, “Securify2,” https://github.com/eth-sri/securify2.

[65] ——, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2018, pp. 67–82.

[66] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “Vultron: Catching
vulnerable smart contracts once and for all,” in Proceedings of the
International Conference on Software Engineering: New Ideas and
Emerging Results, 2019, pp. 1–4.

[67] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
IEEE Transactions on Dependable and Secure Computing, 2020.

[68] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2010, pp.
497–512.

[69] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” https://ethereum.github.io/yellowpaper/paper.pdf.

[70] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the International Symposium on Founda-
tions of Software Engineering: Industry Papers, 2020, pp. 1398–1409.

[71] ——, “Targeted greybox fuzzing with static lookahead analysis,” in
Proceedings of the International Conference on Software Engineering,
2020, pp. 789–800.

[72] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/afl/.
[73] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and

H. Kurihara, “Security assurance for smart contract,” in Proceedings of
the IFIP International Conference on New Technologies, Mobility and
Security, 2018, pp. 1–5.

https://github.com/ethereum/remix
https://github.com/ethereum/remix
https://github.com/eth-sri/securify2
https://ethereum.github.io/yellowpaper/paper.pdf
http://lcamtuf.coredump.cx/afl/

