
Grey-box Concolic Testing on Binary Code
Jaeseung Choi

KAIST
Daejeon, Republic of Korea

jschoi17@kaist.ac.kr

Joonun Jang
Samsung Research

Seoul, Republic of Korea
joonun.jang@samsung.com

Choongwoo Han
Naver Labs

Seongnam, Republic of Korea
cwhan.tunz@gmail.com

Sang Kil Cha
KAIST

Daejeon, Republic of Korea
sangkilc@kaist.ac.kr

Abstract—We present grey-box concolic testing, a novel path-
based test case generation method that combines the best of both
white-box and grey-box fuzzing. At a high level, our technique
systematically explores execution paths of a program under test
as in white-box fuzzing, a.k.a. concolic testing, while not giving
up the simplicity of grey-box fuzzing: it only uses a lightweight
instrumentation, and it does not rely on an SMT solver. We
implemented our technique in a system called Eclipser, and
compared it to the state-of-the-art grey-box fuzzers (including
AFLFast, LAF-intel, Steelix, and VUzzer) as well as a symbolic
executor (KLEE). In our experiments, we achieved higher code
coverage and found more bugs than the other tools.

Index Terms—software testing, concolic testing, fuzzing

I. INTRODUCTION

Fuzz testing (fuzzing for short) has been the de facto
standard for finding security vulnerabilities in closed binary
code [1]. Security practitioners appreciate fuzzing because it
always finds bugs along with proof. Major software companies
such as Microsoft and Google employ fuzzing nowadays in
their software development life cycle as a means of assuring
the security of their products [2], [3].

Most notably, grey-box fuzzers such as AFL [4],
AFLFast [5], Steelix [6], VUzzer [7], Angora [8], CollAFL [9],
and T-Fuzz [10] are emerging as the state-of-the-art in bug
finding. Grey-box fuzzing generates test cases with an evolu-
tionary process. Specifically, it executes test cases and eval-
uates them based on a fitness function (a.k.a. an objective
function). It then prioritizes those with better fitness, evolves
them to find test cases that meet the objective, and continues to
iterate the entire process with the hope of exercising a buggy
path that triggers program crashes.

Current grey-box fuzzers use code coverage as their fitness
function. Accordingly, they are sometimes referred to as
coverage-based fuzzers [5], [7]. For example, AFL [4] and
its successors [5], [6], [11] employ an approximated form of
branch coverage, while VUzzer [7] uses weighted basic block
hit counts as its fitness function. It is plain that the likelihood
of exercising interesting execution paths of the Program Under
Test (PUT) increases by maximizing the code coverage.

However, existing grey-box fuzzers suffer from exercising
new branches even with the coverage-based guidance, as code
coverage does not change sensitively over input mutations. In
particular, two program executions with two different inputs
may achieve the same code coverage, even though the com-
pared values of a conditional branch in the executions are
distinct. In other words, code coverage can provide feedback

only if a conditional branch is penetrated with a randomly
generated input, but it does not directly help generate such
input. This lack of sensitivity makes it difficult for grey-
box fuzzers to generate high-coverage test cases in some
circumstances, for example when the PUT compares input to
a specific magic value. Even the current state-of-the-art grey-
box fuzzers such as AFLGo [11], Steelix [6] and VUzzer [7]
have more or less the same problem.

Consequently, it is widely believed that grey-box fuzzing
cannot be a sole test case generation algorithm despite its
effectiveness at finding vulnerabilities. Therefore, grey-box
fuzzers are often augmented by heavy-cost white-box analyses
such as dynamic symbolic execution [10], [12] and fine-
grained taint analyses [7], [8], [13], or by providing initial
seed inputs to direct the test case generation process [14], [15].
For example, Angora [8] and Driller [12] leverage fine-grained
taint analysis and dynamic symbolic execution, respectively, to
improve code coverage of grey-box fuzzing.

Meanwhile, white-box fuzzing (a.k.a. dynamic symbolic
execution or concolic testing) [16]–[21] can systematically
generate test cases by solving branch conditions, but it is fun-
damentally limited by the scalability, leaving aside the classic
path explosion problem. First, white-box fuzzers analyze every
single instruction of the PUT. Because it instruments every
single instruction of the PUT, every fuzzing iteration entails
a significant computational cost. Second, symbolic execution
builds up symbolic path constraints for every execution path.
Solving such constraints with an SMT solver [22] is computa-
tionally expensive. Furthermore, storing symbolic expressions
for every single memory cell affected by symbolic inputs
requires significant memory space.

In this paper, we propose a novel test case generation
technique, called grey-box concolic testing, and implement it
in a tool referred to here as Eclipser. Grey-box concolic testing
efficiently generates test cases satisfying branch conditions as
in white-box fuzzing, while not losing simplicity: it does not
rely on expensive program analysis techniques. Thus, it scales
to real-world applications as in grey-box fuzzing.

Our approach resembles generational search, which is a
search strategy widely used in white-box fuzzing [19], [23],
where a single program execution produces a generation of
test cases by resolving every conditional branch encountered
during the execution. Grey-box concolic testing performs a
path-based test case generation too, but it tries to resolve
conditional branches in a grey-box manner: it instruments the

PUT and observes its execution behavior to generate test cases.

The key difference between grey-box concolic testing and
white-box fuzzing is that our approach relies on an approxi-
mated form of path constraint, which partially describes input
conditions to exercise each execution path of the PUT. The
approximated path constraints help us find inputs that can
penetrate conditional branches without resorting to CPU- or
memory-intensive operations such as SMT solving. Naturally,
the path constraints generated from grey-box concolic testing
are imprecise, but, in practice, they are precise enough to
quickly explore diverse execution paths. The primary design
decision here is to trade off simplicity for precision.

Of course, the lack of precision introduces incomplete
exploration of paths in the PUT, but Eclipser compensates this
by alternating between grey-box concolic testing and classic
grey-box fuzzing as in Driller [12]. Even though grey-box
concolic testing does not fully cover conditional branches of
the PUT, the grey-box fuzzing module continues to cover
new paths and branches, and vice versa. We found that in
practice this design decision effectively expands the capability
of Eclipser beyond that of the current state-of-the-art grey- and
white-box fuzzers in terms of both finding vulnerabilities and
reaching high code coverage.

We evaluated Eclipser against current state-of-the-art
fuzzers. The practicality of our system as a test case generator
was confirmed by an experiment we performed against KLEE,
a state-of-the-art symbolic executor known to excel in gener-
ating tests with high coverage from given source code [18],
[24]. In the experiment, Eclipser achieved 8.57% higher code
coverage than KLEE on GNU coreutils, which is a well-
known benchmark used for evaluating test case generation
algorithms [25]–[27], without the help of SMT solvers.

To evaluate Eclipser as a bug finding tool, we compared
Eclipser against several state-of-the-art grey-box fuzzers such
as AFLFast [5], LAF-intel [28], Steelix [6], and VUzzer [7].
We also ran Eclipser on 22 binaries extracted from Debian 9.1,
and found 40 unique bugs from 17 programs. We have reported
all the bugs we found to the developers. In summary, this paper
has the following contributions.

1) We introduce a novel path-based test case genera-
tion algorithm, called grey-box concolic testing, which
leverages lightweight instrumentation to generate high-
coverage test cases.

2) We implement Eclipser and evaluate it on various
benchmarks against state-of-the-art fuzzers including
AFLFast, LAF-intel, Steelix, and VUzzer. According to
the evaluation, Eclipser excels in terms of both code
coverage and bug finding compared to them.

3) We ran Eclipser on 22 real-world Linux applications
and found 40 previously unknown bugs. CVE identifiers
were assigned for 8 of them.

4) We make the source code of Eclipser public for open
science: https://github.com/SoftSec-KAIST/Eclipser.

II. BACKGROUND AND MOTIVATION

A. Grey-box Fuzzing
Fuzzing is essentially a process of repeatedly executing a

Program Under Test (PUT) with generated test cases. Grey-
box fuzzing [4]–[6], [29] evolves test cases within a feedback
loop, in which executions of the PUT with each test case are
evaluated by a criterion that we call a fitness function. Most
grey-box fuzzers use code coverage as their fitness function,
although specific implementations may differ. AFL [4], for
instance, uses branch coverage (modulo some noise) to deter-
mine which input should be fuzzed next.

Despite their recent success, coverage-based grey-box
fuzzers are linked to a major drawback in that their fuzzing
process involves too many unnecessary trials to find a test
case that exercises a specific branch. This is mainly due
to the insensitivity of the fitness function used for fuzzing.
Informally speaking, a fitness function is sensitive if the fitness
can be varied easily by a small modification of the input
value. Any code coverage metric, e.g., node coverage and
branch coverage, is insensitive because there is no intermediate
fitness between two executions that cover the true and the false
branch. Therefore, it is difficult to find an input that flips a
given branch condition.

The necessity of sensitive fitness function is widely recog-
nized in search-based software testing [30] where test case
generation is considered as an optimization problem. One
notable fitness function is branch distance [31], [32], which is
a distance between the operand values of a conditional branch.
Fuzzing community has been recently started to employ the
idea: Angora [8] leveraged branch distance to improve its
fuzzing performance. Eclipser leverages the similar insight,
but uses the sensitivity to directly infer and solve approxi-
mated branch conditions, not leaning on metaheuristics. Both
approaches are orthogonal and complementary to each other.

B. Notation and Terminologies
We let an execution be a finite sequence of instructions:

we do not consider a program execution with an infinite loop
for instance. This is not an issue in fuzzing, because fuzzers
will forcefully terminate the PUT after a certain period of
time, which is typically a parameter to fuzzers. We denote an
execution of a program p with an input i by σp(i). In our
model, an input is a byte sequence, although we can easily
extend it to represent a bit string. For a given input i, we let
i[n] be the nth byte value of i. We denote an input derived
by modifying i[n] to become v by i[n ← v]. Throughout the
paper, we interchangeably use the terms test case and test
input. We let an input field be a consecutive subsequence of
an input. There can be many input fields for a given input,
and input fields may overlap.

Approximate Path Constraint. In symbolic execution [19],
a path constraint is a predicate on the input such that if an ex-
ecution path is feasible, then the corresponding path condition
is satisfiable. Since our approach tries to be lightweight, we
do not trace the exact path conditions, but an approximated
version that we call an approximate path constraint.

https://github.com/SoftSec-KAIST/Eclipser

1 int vulnfunc(int32_t intInput, char * strInput) {
2 if (2 * intInput + 1 == 31337)
3 if (strcmp(strInput, "Bad!") == 0)
4 crash();
5 }
6 int main(int argc, char* argv[]) {
7 char buf[9];
8 int fd = open(argv[1], O_RDONLY);
9 read(fd, buf, sizeof(buf) - 1);

10 buf[8] = 0;
11 vulnfunc(*((int32_t*) &buf[0]), &buf[4]);
12 return 0;
13 }

(a) An example program written in C. Error handling routines are intentionally
not shown for simplicity.

Fuzzer Version Release Class Binary Hit Time

Eclipser 1.0 5/25/2019 G# 3 3 0.64s
KLEE [18] 1.4.0 7/22/2017 # 7 3 0.32s
LAF-intel [28] 8b0265 8/23/2016 G# 7 3 430s
AFL [4] 2.51b 8/30/2017 G# 3 7 -
AFLFast [5] 15894a 10/28/2017 G# 3 7 -
AFLGo [11] d650de 11/24/2017 G# 7 7 -

(b) Comparison between state-of-the-art fuzzers in our example program.
G# and # represent grey-box and white-box methodology, respectively. The
fifth column shows whether a fuzzer can handle binary code or not. The sixth
column indicates whether a fuzzer has found the crash in 1 hour.

Fig. 1. Our motivating example and a comparison of different fuzzers.

Seed. In this paper, we let seed be a data structure that
represents an input for a specific program. We denote a seed
for a program p as sp, and the execution of p with the seed
sp as σp(sp). The nth byte of the seed sp is denoted by sp[n].
Every byte of a seed is tagged with a field “constr”, which
is an independent subset of an approximate path constraint
with regard to the byte. We can access an approximate path
constraint of the nth byte of a seed sp with the dot notation:
sp[n].constr. For a given seed sp, the nth byte of the seed
sp[n] should satisfy sp[n].constr in order to exercise the
same execution path as σp(sp).

C. Motivation

Figure 1a shows an example program that motivates our
research. Note that we use C representation for ease of expla-
nation, although our system works on raw binary executables.
It takes in a file as input, and uses the first 4 bytes of the
file as an integer, and the rest 4 bytes as a 5-byte string by
appending a NULL character at the end (Line 10). These two
values are used as parameters to the function vulnfunc. In
order to find the crash in Line 4, we need to provide the 32-bit
integer 15,668 and the string "Bad!" as input to the function.

Can current grey-box fuzzers find the test input that triggers
this crash? How effective are grey-box fuzzers at finding such a
simple bug? To answer these questions, we fuzzed our example
program with 6 state-of-the-art fuzzers as well as with Eclipser
for 1 hour each on a single core of Intel Xeon E3-1231 v3
processor (3.40 GHz). We selected four open-sourced grey-
box fuzzers including AFL [4], AFLFast [5], AFLGo [11], and
LAF-intel1 [28]. We also chose a popular symbolic executor,

1We selected LAF-intel instead of Steelix [6] because Steelix is not open-
sourced. One may consider Steelix as an improved version of LAF-intel.

i.e., a white-box fuzzer, KLEE [18]. Notice some of the
fuzzers, i.e., KLEE, LAF-intel, and AFLGo, can only operate
on source code. Thus, we ran them with the source, while we
ran the other fuzzers on the compiled binary. For example,
we ran AFL in a QEMU mode [33]. To run AFLGo, we gave
Line 4 as a target location to give it a guidance.

Figure 1b summarizes the result. All the grey-box fuzzers
except LAF-intel failed to find the buggy test case. LAF-intel
succeeded because it breaks down the multi-byte comparison
statement into multiple single-byte comparisons, which effec-
tively makes code coverage metric sensitive to input mutations.
Note, however, LAF-intel was 671× slower than Eclipser in
finding the bug even with source-based instrumentation, which
entails lower overhead than binary-level instrumentation.

Notably, the result was even comparable to KLEE. Eclipser
was twice slower than KLEE in finding the bug, but Eclipser
runs directly on binary code whereas KLEE requires source
code. Furthermore, symbolic execution quickly slows down
as it encounters more conditional branches because of SMT
solving, while complex path conditions do not significantly
affect the performance of Eclipser. Indeed, Eclipser achieved
even higher code coverage than KLEE on GNU coreutils as
we discuss in §V-C, and we also show that Eclipser can scale
to handle large real-world applications in §V-E.

This example highlights the potential of grey-box concolic
testing. While our technique compromises the precision of
white-box fuzzing, it quickly produces test cases for exercising
various distinct execution paths of the PUT without relying on
any heavy-cost analyses.

III. GREY-BOX CONCOLIC TESTING

Grey-box concolic testing is a way of producing test cases
from a given seed input. At a high level, it behaves similarly
to dynamic symbolic execution using the generational search
strategy [19], [23], where an execution of the PUT with a seed
produces a generation of test cases by expanding all feasible
branch conditions in the execution path. Grey-box concolic
testing operates in a similar manner, but it selectively solves
branch conditions encountered in the path while not relying
on SMT solving.

The key aspect of our approach is to maintain an indepen-
dent subset of an approximate path constraint per each input
byte of a seed. The constraints help generate distinct test cases
that can be used to exercise the same (or similar) execution
path of the PUT by resolving the constraints. With such test
cases, we can see that some of the conditional branches in
the path compare distinct input values even though they take
the same execution path. We use such an execution behavior
to penetrate conditional branches in a grey-box manner. Our
technique effectively resolves branch conditions like white-
box fuzzing (i.e., concolic testing), while keeping our system
lightweight and scalable like grey-box fuzzing.

A. Overview

Grey-box concolic testing operates with four major func-
tions: SPAWN, IDENTIFY, SELECT, and SEARCH. The crux

Algorithm 1: Grey-box Concolic Testing.
1 function GreyConc(p, sp, k)
2 pc← {} // Approximate path constraint
3 seeds← ∅
4 execs← SPAWN(p, sp, k)
5 conds← IDENTIFY(p, execs)
6 for cond in SELECT(conds) do
7 s′p, c← SEARCH(p, k, pc, execs, cond)
8 seeds← seeds+ s′p
9 pc← pc ∧ c // Merge two constraints

10 return seeds

of grey-box concolic testing is expressed in Algorithm 1 with
these functions.

SPAWN (p, sp, k)→ execs
SPAWN takes in a program p, a seed sp and a byte offset
k as input. It first generates a set of Nspawn distinct inputs
by modifying the kth byte of sp, where Nspawn is a user
parameter. It then executes p with the generated inputs,
and returns the executions (execs) (see §III-C).

IDENTIFY (p,execs)→ conds
IDENTIFY takes in a program p and a set of executions
(execs) as input. It identifies a sequence of conditional
statements (conds) that are affected by the kth input
byte (see §III-D).

SELECT (conds)→ conds′

SELECT returns a subsequence from the given sequence
of conditional statements. In our current implementation
of Eclipser, this step simply returns a subsequence of
maximum Nsolve randomly selected conditional state-
ments, where Nsolve is a user parameter (see §III-E).

SEARCH (p, k,pc,execs,cond)→ s′p, c
SEARCH seeks to penetrate a given conditional statement
cond, and returns a new seed s′p that can exercise the
new branch at cond, i.e., the branch not taken by σp(sp),
along with a constraint c. The constraint c represents
input conditions to follow the current execution σp(sp).
The generated seed takes the same execution up to cond
as σp(sp), and exercises the opposite branch at cond
(see §III-F).

At a high level, grey-box concolic testing takes in a program
p, a seed input sp, and a byte position k as input, and outputs
a set of test cases that cover execution paths different than
σp(sp). Unlike typical concolic testing, our approach takes in
an additional parameter k to specify which input byte position
we are interested in. This is to simplify the process of grey-
box concolic testing by focusing only on a single input field
located at the offset k. Although our focus is on a single input
field, it is still possible to penetrate conditional branches where
the condition is affected by multiple input fields, because
our strategy may find a satisfying assignment for each one
input field at a time. Furthermore, even if SEARCH cannot
find a satisfying solution, Eclipser performs random mutation
to compensate for the error (§IV). Handling such cases in a
general fashion is beyond the scope of this paper.

The variable pc represents an approximate path constraint

2 if (2 * intInput + 1 == 31337) {
3 if (strcmp(strInput, "Bad!") == 0) {

add eax, eax # eax = intInput
inc eax
cmp eax, 31337
je label_1

call strcmp
cmp eax, 0
je label_2

Fig. 2. Our running example snippet.

for the execution σp(sp). Specifically, pc is a map from a byte
in sp to an independent constraint for the corresponding byte,
which is initially an empty map in Line 2 of Algorithm 1. The
approximate path constraint grows as we encounter conditional
statements in the execution. Note that this data structure is
inspired by independent formulas used in [18], [34].

Grey-box concolic testing instruments every comparison
instruction in the execution, but selects only a subset of them
in Line 6 for building the constraint pc, thereby, it generates
an approximate path constraint. For each of the selected
conditional statements, we add the corresponding formula to
pc (Line 9). Note that this process is the same as dynamic
symbolic execution except that we maintain an approximated
subset of the path constraint.

B. Example

To describe our technique, let us revisit the motivating
example in §II-C. Figure 2 presents a code snippet taken from
the example and the corresponding binary code. We assume
that (1) the initial seed file sp consists of eight consecutive
zeros, (2) Nspawn is set to 3, and (3) the current offset k is zero.
Eclipser operates by moving around this offset k throughout
a fuzzing campaign as we describe in §IV.

Suppose SPAWN generates three inputs sp[0← 10], sp[0←
50], and sp[0 ← 90], and executes p with the inputs to
produce three executions: σp(sp[0 ← 10]), σp(sp[0 ← 50]),
and σp(sp[0 ← 90]). IDENTIFY then observes from the
executions that the first cmp instruction compares the integer
31,337 with three different values in eax: 21, 101, and 181.
From the overlapping execution prefix of the three, IDENTIFY
returns a pair of the comparison instruction and the following
conditional jump instruction. Next, SELECT takes the pair and
simply returns it as there is only one item to consider. Finally,
SEARCH checks the relationship between the three values (10,
50, and 90) and the corresponding compared values (21, 101,
and 181) in the overlapping execution. In this case, SEARCH
infers the following linear relationship: eax = 2× sp[0] + 1.
By solving this equation, we obtain 15,668 (0x3d34), which
is the value of intInput satisfying the first condition.

However, the solution does not fit in one byte. Thus we
have to infer the size of the corresponding input field, which
includes the first byte (since k = 0) and its neighboring
bytes. We consider input sizes up to 8 bytes starting from
size 2. In this case, the 2-byte solution works, and it will
be used to generate a test case (s′p) by replacing the first
two bytes of sp, which results in the following 8-byte file

in a hexadecimal representation: 34 3d 00 00 00 00 00
00. SEARCH executes the PUT with this input to see if we
can penetrate the conditional branch. Since we can exercise
the new branch, it returns the generated seed that contains
the approximate path constraint for this branch: {sp[0] 7→
[0x34,0x34], sp[1] 7→ [0x3d,0x3d]}, where the square
brackets represent a closed interval. We describe how we
encode an approximate path constraint in §IV-C.

Eclipser now repeats the above processes by using s′p as a
new seed while incrementing k. When k = 4, SPAWN returns
the following three executions: σp(s′p[4 ← 10]), σp(s′p[4 ←
50]), and σp(s′p[4← 90]). IDENTIFY finds the correspondence
between the fifth input byte (k = 4) and eax.

SEARCH then figures out that the eax value monotonically
increases with regard to s′p[4]. It performs binary search by
mutating the kth input byte, and finds out that eax changes
from -1 to 1, when the input byte changes from 0x42 ('B')
to 0x43 ('C'). Since we did not find a solution, which
makes eax be zero, we extend the input field size by one,
and perform another binary search between 0x4200 and
0x4300. We repeat this process until we find the solution
"Bad!", which makes the PUT exercise the true branch of
the conditional statement. Finally, SEARCH produces a seed
that contains the string "Bad!".

C. SPAWN

SPAWN generates test inputs by mutating the kth byte
of the seed sp based on the constraint sp[k].constr, and
returns executions of p with regard to the generated inputs.
The primary goal here is to produce a set of N test inputs
{i1, i2, · · · , iN} such that σp(i1) ≈ σp(i2) ≈ · · · ≈ σp(iN).
Finding such inputs with an SMT solver is feasible in practice,
but recall that one of our design goals is to be able to solve
approximate path constraints in a lightweight manner.

Eclipser uses an interval to represent approximate path
constraint (see §IV-C). Therefore, finding inputs that satisfy
an approximate path constraint is as easy as choosing a value
within an interval. If the constraint sp[k].constr was precise
as in symbolic execution, then we could always generate
distinct test inputs that can be used to exercise the exact
same path of the PUT, i.e., we could generate inputs such
that σp(i1) = σp(i2) = · · · = σp(iN). However, our approach
can produce false inputs that do not satisfy the actual path
constraint due to the incompleteness of sp[k].constr. We
note that this is not a serious issue as our focus in IDENTIFY
is on the overlapping execution prefix.

We denote the maximum number of executions to return in
SPAWN by Nspawn, i.e., N = Nspawn. This is a configurable
parameter by an analyst. In the current implementation of
Eclipser, we set this value to 10 by default, which is chosen
based on our empirical study in §V-B. SPAWN executes
the PUT Nspawn times for a given seed, whereas traditional
symbolic execution runs the PUT only once. This is the major
trade-off that we have to accept for designing a scalable fuzzer.

b1

b2

b3

b4 · · ·

· · ·

· · ·
if (i[10] < 0x7f)

if (i[9] == 0x49)

if (i[10] < 0x70)
path exercised with

i

path exercised with i′

Fig. 3. A CFG where b1, . . . , b4 are conditional branches. Two execution
paths, σp(i) and σp(i′) diverge at the conditional branch b3. The left and
the right branches correspond to true and false branches, respectively.

D. IDENTIFY

The primary goal of IDENTIFY is to determine the corre-
spondence between an input byte at the offset k and condi-
tional statements in σp(sp). It returns a subsequence of σp(sp),
which contains all the conditional statements affected by sp[k].

To achieve the goal, one may use fine-grained taint analysis.
However, it is a memory-hungry process because it assigns
an identifier for each input byte, and maintains a set of such
IDs for every expression affected by a given input. There
are several studies on reducing the space efficiency of fine-
grained taint analysis [35], [36], but they assume significant
overlaps between set elements. Furthermore, taint analysis
instruments every single instruction of the PUT, which can
be computationally expensive and too slow for fuzzing.

We use a simple and scalable approach that involves ex-
ecuting the PUT multiple times. Recall that SPAWN returns
Nspawn executions based on test inputs generated by mutating
the kth byte of s. By observing the behavioral difference in
the executions, we can identify the correspondence between
the kth byte and conditional branches in the executions.
Specifically, we first extract a set of conditional statements
at the same position of the overlapping execution prefixes. We
then determine whether a conditional statement b is affected
by the kth byte of the seed by observing the difference in
the decisions of b. This simple approach provides sensitive
feedback about which conditional branches in the executions
are affected by the input byte.

Note that the imprecision of approximate path constraints
is not an issue here, since we can always have executions that
partially overlap. Furthermore, since SPAWN generates inputs
by mutation, some of the produced executions may exercise
totally distinct execution paths, and thereby, cover interesting
paths of the PUT. Eclipser can benefit from such by-products.

Figure 3 illustrates a case where we execute a program p
with two inputs i and i′ that are different only by the byte
value at the offset 10. There are three conditional statements
b1, b2, and b3 in the overlapping prefixes of the executions
σp(i) and σp(i

′). In this example, we can observe that the
compared values for b1 and b3 are different in the executions.
Therefore, we conclude that the eleventh input byte (i[10] and
i′[10]) has a correspondence with b1 and b3.

E. SELECT

During IDENTIFY, we may end up having too many condi-
tional statements to handle. This phenomenon is often referred

1 # mov ebx, f(input)
2 cmp ebx, 20
3 je label

input0

20

ebx

42

Fig. 4. Monotonic input-output relationship.

to as a path explosion problem in dynamic symbolic execution.
For example, consider the following for loop, where inp
indicates a user-supplied input.

for (i=0; i<inp; i++) { /* omitted */ }

In this case, we can encounter an arbitrary number of condi-
tional statements depending on the user input. If we handle
every single statement returned from IDENTIFY, our system
may not explore interesting paths for given time.

To cope with this challenge, SELECT randomly selects
Nsolve conditional statements from the given sequence of
conditional statements while preserving the order of their
appearance. The order should remain the same, because we
need to build an approximate path constraint along the pro-
gram execution. In the current implementation of Eclipser, we
use Nsolve = 200, which is determined empirically (§V-B).
Note that dynamic symbolic executors such as Sage [19] and
KLEE [18] also employ several path selection heuristics to
handle the same challenge.

F. SEARCH

SEARCH resolves a branch condition to cover a new branch
in the given conditional statement cond. As a result, it
returns a new seed as well as a branch condition, which is
approximated with an interval (§IV-C), in order for following
the current execution path σp(sp). The primary challenge here
is on solving approximate path constraints without the help of
an SMT solver.

Recall that IDENTIFY returns conditional statements that
have a relationship with the kth input byte. We can represent
this relationship as a data flow abstraction, where sp[k] is
an input, and one of operands in each of the conditional
statements is an output. The key intuition of SEARCH is that
by realizing such an input-output relationship, we can deduce
a potential solution of an approximate path constraint.

Specifically, SEARCH focuses on cases where the input-
output relationship is either linear or monotonic. This design
choice is supported by various previous research works [37]–
[39] as well as our own empirical observation. We observed
that many conditional branches in real-world programs tend
to have a linear or monotonic constraint (see §V-C1).

SEARCH runs in three steps: (1) formulating and solving
the current branch condition (§III-F1), (2) recognizing a cor-
responding input field (§III-F2), and (3) generating a new seed
that can penetrate the conditional statement (§III-F3).

1) Solving Branch Condition: Let us assume w.l.o.g.
that only one of the two operands of cond is affected
by input i, and the operand is denoted by oprnd(i). We
can decide that the branch condition of cond is linear
if there exist i1, i2, and i3 such that oprnd(i1)−oprnd(i2)

i1−i2 =

k-th byte

8 byte
4 byte 2 byte

8 byte
4 byte2 byte

Fig. 5. Input field recognition.

oprnd(i2)−oprnd(i3)
i2−i3 . In this case, we can directly construct and

solve a linear equation or inequality. On the other hand, cond
has a monotonic branch condition if oprnd is a monotonic
function over all the observed inputs i1, i2, ..., in (n ≥ 3)
that executed cond. Figure 4 illustrates an example where
we have a monotonic input-output relationship between a two-
byte input field (input) and the compared value (ebx). For
such a monotonic relationship, we perform a binary search to
find out a solution.

2) Recognizing Input Field: Note that our focus so far has
been on an input byte, i.e., sp[k]. However, many branch
conditions are constrained not only by an input byte but
by an input field, e.g., a 32-bit integer or a 64-bit integer.
This means SEARCH should be able to handle input fields
of arbitrary size. Moreover, our equation solving in SEARCH
operates on arbitrary-precision integers, which may give us a
solution that does not fit in a byte. We can naturally expand the
capability of SEARCH by executing the PUT with several more
input candidates. Specifically, we replace the seed with the
solution we obtained while considering the solution to have a
specific size. When solving linear equations or inequalities, we
consider maximum seven cases to try all possible candidates as
Figure 5 describes. For binary search on monotonic conditions,
we start the search by considering the size of the input field to
be one, and then gradually increase the size until a threshold,
which is set to 8 in current implementation.

3) Seed Generation: To generate a new seed that executes a
new path, we should first approximate the constraint from the
current branch, and encode it to the constr field of the newly
generated seed. Specifically, we turn the branch condition into
a dictionary c, which maps an input byte position i to an
approximated constraint c[i], which is represented by an inter-
val. For every byte position i in c, we update sp[i].constr
with ¬c[i] ∧ pc[i], where ∧ represents a conjunction of two
intervals. The concrete value of the sp[i] is also updated with a
value that is within the interval ¬c[i]. We take the negation of
each of the branch condition ¬c[i], because we want to follow
the path that is not taken by the current execution. That is,
the new seed should take the opposite branch when executed
with the PUT. SEARCH returns c, and uses it to build up pc.
We refer to §IV-C for more details on how to approximate the
branch conditions found.

IV. ECLIPSER ARCHITECTURE

Although grey-box concolic testing itself enables systematic
test case generation for p from a given seed sp and a byte
position k, one needs to devise a way to run grey-box concolic
testing with varying byte positions as well as with different

Algorithm 2: Main Algorithm of Eclipser.
// p: PUT, seeds: initial seeds, t: time limit

1 function Eclipser(p, seeds, t)
2 Q← InitQueue(seeds)
3 T ← ∅
4 while getTime() < t do
5 RG, RR ← Schedule()
6 Q,T ← GreyConcolicLoop(p, Q, T , RG)
7 Q,T ← RandomFuzzLoop(p, Q, T , RR)

8 return T

seeds in order to explore interesting paths. This section de-
scribes how we tackle such problems in the design of Eclipser.

A. Main Algorithm

Recall from §III-F, grey-box concolic testing currently
focuses on linear and monotonic constraints, and it may not be
able to handle some complex branch conditions that involve
multiple input fields. To cope with these challenges, Eclipser
employs a classic grey-box fuzzing strategy. Our goal is to
maximize the ability of both grey-box concolic testing and
grey-box fuzzing by alternating them. The idea of alternating
between fuzzing strategies has been previously proposed [12],
[40], [41], and is complementary to ours.

Algorithm 2 describes the overall procedure of Eclipser.
Eclipser takes in as input a program p, a time limit t,
and a set of initial seeds seeds, and returns a set of test
cases T generated during a fuzzing campaign. Eclipser first
initializes the priority queue Q with the provided initial
seeds seeds, and runs in a while loop until the time
limit t expires. In Line 5, Schedule allocates resources
for grey-box concolic testing (RG) and grey-box fuzzing
(RR). Then the two fuzzing strategies, i.e., grey-box con-
colic testing (GreyConcolicLoop) and grey-box fuzzing
(RandomFuzzLoop), alternately generate new test cases un-
til they consume all the allocated resources. We refer to §IV-B
for details about the resource management. Eclipser updates
Q and T in GreyConcolicLoop and RandomFuzzLoop:
it simply adds newly generated test cases, i.e., seeds, to Q
and T , respectively. T is later returned by the main algorithm
when the fuzzing campaign is over (Line 8).

Priority Queue. For each test input generated, Eclipser
evaluates its fitness based on the code coverage and add it
to Q. Specifically, we give high priority to seeds that cover
any new node, and low priority to seeds that cover a new
path. We drop seeds that do not improve the code coverage.
Eclipser inserts a seed to the queue along with the next value
of k to use. Eclipser currently makes k to be both k − 1
and k + 1, and pushes the seed twice with both positions.
One important aspect of the priority queue is that it allows
two fuzzing strategies to share their seeds. Note that grey-box
concolic testing currently does not extend the size of a given
seed when generating new test cases, while grey-box fuzzing
can. If the grey-box fuzzing module generates an interesting
seed by extending its length, it is shared with the grey-box
concolic testing module through the priority queue Q.

B. Resource Scheduling

When alternating between the two fuzzing strategies, we
need to decide how much resource we should allocate for
each strategy. In Eclipser, our resource is the number of
allowed program executions. If a strategy runs the PUT more
than the allowed number, Eclipser switches the strategy. To
decide when to switch, Eclipser evaluates the efficiency of
each fuzzing strategy, and allocates time proportionally to
the efficiency. Let Nexec be the total number of program
executions for one iteration of the while loop in Line 4 of
Algorithm 2. We define the efficiency f = Npath/Nexec,
where Npath is the number of unique test cases that executed
a new execution path. In other words, Eclipser allocates more
resource to the strategy that explores more new paths.

C. Approximate Path Constraint

Recall that grey-box concolic testing approximates path
constraints with intervals. An approximate path constraint is a
map from an input byte to its corresponding interval constraint:
we represent each constraint with a closed interval. Let [l, u]
be a constraint l ≤ x ≤ u. Then we can express a logical
conjunction of two constraints with an intersection of the two
intervals: [l1, u1] ∧ [l2, u2] = [max(l1, l2),min(u1, u2)].

Let us assume that SEARCH has resolved a branch condition
associated with an n-byte input field x, and obtained an equal-
ity condition x = k as a result. This condition can be expressed
with intervals for each byte, without any loss of precision:
{x0 7→ [k0, k0], x1 7→ [k1, k1], · · · , xn−1 7→ [kn−1, kn−1]},
where ki = (k � (8 ∗ i)) & 0xff and x0, xn−1 are the least
and the most significant byte of x, respectively.

Suppose that the resolved branch condition is an inequality
condition l ≤ x ≤ u. In this case, the condition is approxi-
mated as an interval constraint over the most significant byte
of x: {xn−1 7→ [ln−1, un−1 + 1]}. We only choose the most
significant byte here in order to over-approximate the interval
represented in “integer” type. Eclipser adds this approximated
constraint to pc in Line 9 of Algorithm 1, by performing an
element-wise conjunction.

D. Implementation

We implemented the main algorithm of Eclipser in 4.4k
lines of F# code, and binary instrumentation logic of Eclipser
by adding 800 lines of C code to QEMU (2.3.0) [33].
We wrote the grey-box fuzzing module of Eclipser in F#,
which is essentially a simplified version of AFL [4]. We
employed the mutation operations used in AFL, and a greedy-
set-cover algorithm [14], [42] for minimizing the number
of seeds during a fuzzing campaign. To obtain execution
feedback from an execution of a binary, we used QEMU
user mode emulation because it can easily extend Eclipser
to handle various architectures. Currently, Eclipser supports
three widely used architectures: x86, x86-64, and ARMv7. Our
implementation of Eclipser is publicly available on GitHub:
https://github.com/SoftSec-KAIST/Eclipser.2

2The ARMv7 version will not be open-sourced due to an IP issue.

https://github.com/SoftSec-KAIST/Eclipser

V. EVALUATION

We evaluated Eclipser to answer the following questions:
1) How does the configuration parameter of Eclipser affect

its performance? (§V-B)
2) Can grey-box concolic testing be a general test case

generation algorithm? If so how does it compare to
existing white-box fuzzers? (§V-C)

3) Can Eclipser beat the state-of-the-art grey-box fuzzers
in finding bugs? (§V-D)

4) Can Eclipser find new bugs from real-world applica-
tions? Is grey-box concolic testing scalable enough to
handle such large and complex programs? (§V-E)

A. Experimental Setup

We ran our experiments on a private cluster of 64 VMs.
Each VM was equipped with a single Intel Xeon E5-2699
V4 (2.20 GHz) core and 8GB of memory. We performed our
experiments on three benchmarks: (1) 95 programs from GNU
coreutils 8.27; (2) 4 programs from LAVA-M benchmark; and
(3) 22 real-world programs included in Debian 9.1 packages.

First, we selected GNU coreutils to compare Eclipser
against KLEE, because KLEE [18] and other white-box
fuzzers [25], [27] use this benchmark to evaluate their per-
formance. Second, we evaluated the bug finding ability of
Eclipser against grey-box fuzzers on LAVA-M benchmark [43]
as it is used to evaluate many existing fuzzers [6], [7],
[10]. Finally, we fuzzed real-world applications chosen from
Debian 9.1 to measure the practical impact of Eclipser.

Comparison Targets. We chose two existing grey-box
fuzzers for comparison, which are available at the time of writ-
ing: AFLFast [5] and LAF-intel [28]. We omitted Driller [12]
as its current support for ELF binary is limited. We were not
able to run VUzzer [7] as it is dependent on IDA pro, which is
a commercial product. We also omitted Steelix [6], T-Fuzz [10]
and Angora [8] as they are not publicly available.

B. Eclipser Configuration

Recall from §III, Eclipser uses two user-configurable param-
eters: Nspawn and Nsolve. These parameters decide how many
branches to identify and to penetrate with grey-box concolic
testing, respectively. To estimate the impact of the parameters,
we ran Eclipser on each of the programs in the first benchmark
(coreutils 8.27) for one hour with varying configurations and
measured code coverage differences. In particular, we chose
five exponentially increasing values for each parameter.

Figure 6 summarizes the results. When Nspawn is too
small, IDENTIFY failed to identify some interesting conditional
branches, and the coverage decreased as a result, but when
Nspawn is too large, Eclipser ended up consuming too much
time on unnecessary program executions. Similarly, by making
Nsolve too small, Eclipser started to miss some interesting
conditional branches, but by making it too large, we started
to cover less nodes due to path explosion.

From these results, we decided to use Nspawn = 10 and
Nsolve = 200 as a default set of parameter values for Eclipser,
and used them for the rest of our experiments.

60

65

70

75

80

5 10 20 40 80

Li
ne

 c
ov

er
ag

e
(%

)

(a) Nspawn (in log scale)

60

65

70

75

80

8 40 200 1000 5000

Li
ne

 c
ov

er
ag

e
(%

)

(b) Nsolve (in log scale)

Fig. 6. The impact of Nspawn and Nsolve.

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (minute)

Li
ne

 c
ov

er
ag

e
(%

)

Eclipser

KLEE

Grey-box concolic

Grey-box fuzzing

Fig. 7. Line coverage achieved by Eclipser and KLEE over time for coreutils.

C. Comparison against White-box Fuzzing

To evaluate the effectiveness of grey-box concolic testing as
a test case generation algorithm, we compared it against KLEE
version 1.4.0, which was the latest at the time of writing. We
chose coreutils as our benchmark, as it is used in the original
paper of KLEE [18]. Out of 107 programs in coreutils 8.27,
we excluded 8 programs that can affect the fuzzing process
itself, e.g. kill and rm, and 4 programs that raised unhandled
exceptions with KLEE. We tested each of the remaining 95
programs for one hour. Additionally, we used the command
line options reported in KLEE website [44] to run KLEE. For
a fair comparison, we set the same limitation on the input
size when running Eclipser. All the numbers reported here are
averaged over 8 iterations.

We seek to answer the three questions here: (1) Can
grey-box concolic testing itself without the grey-box fuzzing
module beat KLEE in terms of code coverage? (2) Can we
benefit from alternating between grey-box fuzzing and grey-
box concolic testing? and (3) Can Eclipser find realistic bugs
in coreutils? How does it compare to KLEE?

1) Grey-box Concolic Testing Effectiveness: We ran
Eclipser in two different modes: (1) only with grey-box
concolic testing, and (2) only with grey-box fuzzing. The
blue and the pink line in Figure 7 present the coverage for
each case, respectively. Out of a total 32,223 source lines,
grey-box concolic testing covered 20,737 lines (64.36%), and
solely using the grey-box fuzzing module covered 18,540 lines
(57.54%), while KLEE covered 20,445 lines (63.45%)3. This
result clearly indicates that grey-box concolic testing alone
is comparable to KLEE. Note that our tool runs directly on
binary executables while KLEE runs on source code. This

3We note that a sharp increase of KLEE’s line coverage around 60 minute
does not mean that KLEE starts to rapidly explore code around that point.
When a time limit expires, KLEE outputs the test cases remaining in the
memory even if their symbolic executions are not finished. Indeed, we further
ran KLEE for more than 6 hours, but the coverage increased only by 2.10%.

0

200

400

Programs in coreutils

D
iff

er
en

ce
 in

co
ve

re
d

lin
e

#

Fig. 8. Difference in the number of lines covered by Eclipser and KLEE.

TABLE I
NUMBER OF BUGS FOUND ON LAVA-M.

Program AFLFast LAF-intel VUzzer Steelix Eclipser
base64 0 40 17 43 46
md5sum 0 0 1 28 55
uniq 0 26 27 7 29
who 0 3 50 194 1135
Total 0 69 95 272 1265

result empirically justifies our design choice of focusing on
solving linear or monotonic branch conditions.

2) Alternation between Two Strategies: The green line
in Figure 7 shows the source line coverage achieved by
Eclipser while alternating between the two different strategies.
It is obvious from the figure that our design choice indeed
achieved a synergy: Eclipser covered 23,499 lines (72.93%),
outperforming KLEE in terms of code coverage. The standard
deviation of Eclipser’s coverage was 0.54%, while that of
KLEE’s coverage was 0.49%. Additionally, Figure 8 shows
the coverage difference between Eclipser and KLEE for each
program. The x-axis represents tested programs and the y-axis
indicates how many additional lines Eclipser covered more
than KLEE. The leftmost program is stty, where KLEE
covered 66 more lines, and the rightmost program is vdir,
where Eclipser covered 554 more lines.

3) Real Bugs from coreutils: The programs in GNU core-
utils are heavily tested. Can Eclipser still find some meaningful
bugs in them? During the course of our experiments, Eclipser
found two previously unknown bugs, each of which can crash
b2sum and stty, respectively. On the other hand, KLEE was
able to find only one of the bugs during our experiments. This
result indeed highlights the practicality of our system.

D. Comparison against Grey-box Fuzzers

How does Eclipser compare to modern grey-box fuzzers? To
answer this question, we compared the bug finding ability of
Eclipser against state-of-the-art grey-box fuzzers on LAVA-M.
Recall from §V-A we were not able to run Steelix and VUzzer
for this experiment. Instead, we used the numbers reported in
their papers to compare with the other fuzzers. To be fair,
we ran the fuzzers with a similar setting that Steelix used. We
used the same initial seeds used in [6], and ran our experiment
for the same amount of time (5 hours).

Table I shows the number of bugs found from LAVA-M
benchmark. The numbers are averaged over 8 repeated exper-
iments. Eclipser found 18.3×, 13.3×, and 4.7× more bugs
than LAF-intel, VUzzer, and Steelix, respectively. AFLFast

did not find any bug during the experiment. Note that in some
programs, Eclipser was even able to find bugs that the authors
of LAVA failed to reproduce. For example, in base64, the
authors of LAVA could reproduce only 44 bugs in [43].

We note that LAF-intel is a source-based tool, which incurs
less instrumentation overhead compared to binary-based tools.
For example, when we ran AFL on the LAVA-M benchmark,
the number of executions per second with the source-based
instrumentation was 9.3× higher than it with the binary-based
instrumentation on average. Despite such a disadvantage,
Eclipser found far more bugs than LAF-intel. This result shows
that grey-box concolic testing can effectively resolve complex
conditions to trigger bugs injected by LAVA.

E. Fuzzing in the Real World

We further evaluated our system on a variety of programs
in the real world. Specifically, we collected 22 programs from
Debian OS with the following steps. First, we used debtags
to search for packages containing C programs, which deal with
image, audio or video via a command-line interface. Next, we
selected the top 30 popular packages based on the Debian
popularity contest [45]. We then manually picked only the
packages that (1) take in a file as input, (2) can be compiled
with LAF-intel, and (3) can be fuzzed with AFLFast without
an error. Finally, we extracted at most two programs from
each of those packages to obtain a total of 22 programs. We
fuzzed each of the programs for 24 hours with a dummy seed
composed of 16 consecutive NULL bytes.

Table II shows the results. Overall, Eclipser covered 1.43×
(1.44×) and 1.25× (1.25×) more nodes (branches) than
AFLFast and LAF-intel, respectively. While investigating the
result, we confirmed that grey-box concolic testing of Eclipser
indeed played a vital role in achieving high coverage. In
oggenc, for instance, Eclipser covered 3.8× more nodes than
AFLFast as grey-box concolic testing successfully produced
valid signatures for FLAC or RIFF format from scratch.

We further investigated the crashes found, and manually
identified 51 unique bugs. In total, Eclipser, AFLFast, and
LAF-intel found 40, 10, and 25 unique bugs, respectively. We
further analyzed the result, and found that grey-box concolic
testing indeed played a critical role in finding bugs. If we ran
the same experiment only with the grey-box fuzzing module
of Eclipser, which is close to vanilla AFL [4], we obtained
only eight unique bugs after 24 hours. This means, grey-box
concolic testing helped Eclipser find 5× more unique bugs. We
reported all the bugs Eclipser found to the developers, and a
total of 8 new CVEs were assigned at the time of writing. We
believe this result confirms the practical impact of Eclipser.

VI. DISCUSSION

The current design of grey-box concolic testing focuses on
solving branch conditions when the operands of the compar-
ison can be expressed as a linear or monotonic function of
an input field. Recall that Eclipser currently resorts to tradi-
tional grey-box fuzzing to penetrate branches with complex
constraints. This is not a significant drawback since solving

TABLE II
CODE COVERAGE ACHIEVED AND THE NUMBER OF UNIQUE BUGS FOUND IN DEBIAN PROGRAMS.

Program Package LoC AFLFast LAF-intel Eclipser
Node Cov. Branch Cov. # Uniq. Bugs Node Cov. Branch Cov. # Uniq. Bugs Node Cov. Branch Cov. # Uniq. Bugs

advmng 2,517 3,219 0 2,516 3,215 0 3,046 4,031 1
advzip advancecomp 22,615 2,572 3,310 0 2,886 3,742 1 3,701 4,872 1
dcparse 2,006 2,621 0 1,880 2,421 0 2,519 3,411 0
dcraw dcraw 11,328 5,004 7,082 0 4,712 6,490 0 5,887 8,274 4
fig2dev fig2dev 35,027 5,489 7,718 6 5,626 8,117 11 5,025 6,901 5
gifdiff 1,381 1,608 1 2,823 3,676 3 1,996 2,459 2
gifsicle gifsicle 15,212 3,365 4,269 1 4,693 6,132 1 4,636 6,023 1
gnuplot gnuplot 113,368 14,560 21,016 0 18,769 27,542 1 18,333 26,402 1
gocr gocr 17,719 19,281 30,059 1 19,457 30,454 1 19,228 29,864 1
icotool 2,182 2,758 0 2,250 2,830 0 2,778 3,507 0
wrestool icoutils 31,337 1,805 2,205 0 2,344 2,991 1 2,369 3,015 1
jhead jhead 4,099 1,886 2,286 0 2,208 2,707 0 2,327 2,861 1
optipng optipng 82,107 3,885 5,201 0 4,087 5,505 0 4,552 6,088 1
ldactoasc sextractor 39,083 1,200 1,397 0 1,223 1,417 0 3,002 3,765 0
sndfile-info 2,751 3,616 0 1,742 2,087 0 7,304 10,186 2
sndfile-play sndfile-programs 30,141 2,694 3,518 0 1,525 1,790 0 5,941 8,120 3
ufraw-batch ufraw-batch 66,487 6,688 9,281 0 15,977 22,035 2 15,570 21,501 3
oggenc 1,932 2,375 0 2,708 3,395 1 7,422 9,865 2
vorbiscomment vorbis-tools 30,141 1,973 2,475 0 1,912 2,366 0 2,156 2,710 0
wavpack 1,318 1,531 0 1,496 1,775 1 2,676 3,418 8
wvunpack wavpack 32,923 1,946 2,421 0 4,318 6,031 0 4,421 6,057 0
x264 x264 70,382 26,455 37,042 1 23,926 34,612 2 36,772 52,944 3
Total 571,828 112,896 157,014 10 129,083 181,335 25 161,669 226,279 40

non-linear constraints is difficult anyways. However, one may
adopt a metaheuristic-based algorithm we discuss in §VII.

Note that Eclipser currently employs binary-based instru-
mentation to test a wide variety of programs without source
code. However, binary-based instrumentation incurs substan-
tial overhead as we have observed from one of our experiments
in §V-D. It is straightforward to improve the performance of
Eclipser by adopting source-based instrumentation.

VII. RELATED WORK

Eclipser is not a fuzzer per se, but it employs a fuzzing
module. Therefore, all the great research works on fuzzing [4]–
[7], [10], [11], [13], [14], [28], [29], [46]–[50] are indeed
complementary to ours.

Since grey-box concolic testing is inspired by white-box
fuzzing, it naturally suffers from the path explosion problem.
Various search strategies have been proposed to cope with
the problem. KLEE [18], for instance, adopts random path
selection, while others [19], [23], [27], [51]–[53] prioritize
less traveled execution paths or nodes, or leverage static
analyses to guide the search [54]. Although Eclipser follows
the similar approach as in [19], we believe adopting more
complex strategies is a promising future work. Meanwhile,
there are several attempts to increase the scalability of white-
box fuzzing, for example by state merging [25], [55], [56]. In
contrast, our work mainly focuses on relieving the fundamental
overhead for constructing and solving symbolic formulas.

The idea of analyzing programs without expensive data flow
analysis has been studied in various contexts. For example,
MUTAFLOW [57] detects information flow without taint
analysis, by simply mutating input data at a source point
and observing if it affects the output data at sink points.
Helium [37] uses regression analysis to infer the relationship
between the input and the output of a code segment. Such
dynamic analysis is used to complement symbolic execution

in the presence of unknown library functions or loops. Our
work extends these ideas and applies them more aggressively
to devise a general test case generation algorithm.

Angora [8] and SBF [58] are the closest fuzzers to ours.
They adapt the idea of search-based software testing [30],
[59]–[63] to tackle the branch penetration issue discussed in
§II-C. Specifically, Angora tries to find an input that minimizes
the branch distance of a conditional branch. However, it uses
fine-grained taint analysis to identify input bytes affecting a
target conditional branch, whereas Eclipser repeatedly exe-
cutes the PUT to dynamically infer such relationships. Thus,
we believe both approaches are complementary to each other.
For example, one may first apply grey-box concolic testing to
penetrate simple branch conditions, and then turn to Angora’s
strategy to handle more complex conditions.

VIII. CONCLUSION

This paper presents a new point in the design space of
fuzzing. The proposed technique, grey-box concolic testing,
effectively darkens white-box fuzzing without relying on SMT
solving while still performing path-based testing. We imple-
mented our technique in a system called Eclipser, and evalu-
ated it on various benchmarks including coreutils, LAVA-M,
as well as 22 programs in Debian. We showed our technique
is effective compared to the current state-of-the-art tools in
terms of both code coverage and the number of bugs found.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their feedback. This
work was partly supported by Institute for Information & com-
munications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No.B0717-16-0109, Building a
Platform for Automated Reverse Engineering and Vulnerabil-
ity Detection with Binary Code Analysis), and a grant funded
by Samsung Research (Binary Smart Fuzzing).

REFERENCES

[1] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J.
Schwartz, and M. Woo, “Fuzzing: Art, science, and engineering,”
http://arxiv.org/abs/1812.00140, 2018, arXiv, abs/1812.00140.

[2] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proceedings of the
International Conference on Software Engineering, 2013, pp. 122–131.

[3] Chrome Security Team, “Clusterfuzz,” https://code.google.com/p/
clusterfuzz/, 2012.

[4] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/afl/.
[5] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-

box fuzzing as markov chain,” in Proceedings of the ACM Conference
on Computer and Communications Security, 2016, pp. 1032–1043.

[6] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: Program-state based binary fuzzing,” in Proceedings of the
International Symposium on Foundations of Software Engineering, 2017,
pp. 627–637.

[7] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proceedings of
the Network and Distributed System Security Symposium, 2017.

[8] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in Proceedings of the IEEE Symposium on Security and Privacy, 2018,
pp. 855–869.

[9] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path sensitive fuzzing,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2018, pp. 660–677.

[10] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by program
transformation,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2018, pp. 917–930.

[11] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2017, pp. 2329–2344.

[12] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Proceedings of the
Network and Distributed System Security Symposium, 2016.

[13] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2015, pp. 725–741.

[14] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in Proceedings of
the USENIX Security Symposium, 2014, pp. 861–875.

[15] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2017, pp. 579–594.

[16] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2005, pp. 263–272.

[17] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated ran-
dom testing,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2005, pp. 213–223.

[18] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the USENIX Symposium on Operating System Design
and Implementation, 2008, pp. 209–224.

[19] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proceedings of the Network and Distributed System Security
Symposium, 2008, pp. 151–166.

[20] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, “jFuzz: A
concolic whitebox fuzzer for java,” in Proceedings of the First NASA
Forma Methods Symposium, 2009, pp. 121–125.

[21] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2012, pp. 337–348.

[22] L. D. Moura and N. Bjørner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–
77, 2011.

[23] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44, 2012.

[24] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in
practice: Preliminary assessment,” in Proceedings of the International
Conference on Software Engineering, 2011, pp. 1066–1071.

[25] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with Veritesting,” in Proceedings of the International
Conference on Software Engineering, 2014, pp. 1083–1094.

[26] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic
execution for automated real-world software testing,” in Proceedings of
the ACM European Conference on Computer Systems, 2011, pp. 183–
198.

[27] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” in Proceedings of the ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications, 2013, pp. 19–32.

[28] lafintel, “Circumventing fuzzing roadblocks with compiler
transformations,” https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2016.

[29] J. D. DeMott, R. J. Enbody, and W. F. Punch, “Revolutionizing the
field of grey-box attack surface testing with evolutionary fuzzing,” in
Proceedings of the Black Hat USA, 2007.

[30] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[31] B. Korel, “Automated software test data generation,” IEEE Transactions
on Software Engineering, vol. 16, no. 8, pp. 870–879, 1990.

[32] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated
framework for structural test-data generation,” in Proceedings of the
International Conference on Automated Software Engineering, 1998, pp.
285–288.

[33] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the USENIX Annual Technical Conference, 2005, pp. 41–46.

[34] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2012, pp. 380–394.

[35] Z. Lin, X. Zhang, and D. Xu, “Convicting exploitable software vulnera-
bilities: An efficient input provenance based approach,” in Proceedings
of the International Conference on Dependable Systems Networks, 2008,
pp. 247–256.

[36] X. Zhang, R. Gupta, and Y. Zhang, “Efficient forward computation
of dynamic slices using reduced ordered binary decision diagrams,” in
Proceedings of the International Conference on Software Engineering,
2004, pp. 502–511.

[37] W. Le, “Segmented symbolic analysis,” in Proceedings of the Interna-
tional Conference on Software Engineering, 2013, pp. 212–221.

[38] N. Halbwachs, Y.-E. Proy, and P. Roumanoff, “Verification of real-
time systems using linear relation analysis,” Formal Methods in System
Design, vol. 11, no. 2, pp. 157–185, 1997.

[39] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using symbolic, path-
sensitive analysis to detect memory access errors,” in Proceedings of
the International Symposium on Foundations of Software Engineering,
2003, pp. 327–336.

[40] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings of
the International Conference on Software Engineering, 2007, pp. 416–
426.

[41] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin, “Towards
optimal concolic testing,” in Proceedings of the International Conference
on Software Engineering, 2018, pp. 291–302.

[42] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. The MIT Press, 2009.

[43] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “LAVA: Large-scale automated vulnera-
bility addition,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2016, pp. 110–121.

[44] The KLEE Team, “Coreutils experiments,” http://klee.github.io/docs/
coreutils-experiments/, 2013.

[45] Debian, “Debian popularity contest,” http://popcon.debian.org/.
[46] R. Swiecki and F. Gröbert, “honggfuzz,” https://github.com/google/

honggfuzz.
[47] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS fuzzer

seed selection with trace distillation,” in Proceedings of the USENIX
Security Symposium, 2018, pp. 729–743.

https://code.google.com/p/clusterfuzz/
https://code.google.com/p/clusterfuzz/
http://lcamtuf.coredump.cx/afl/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
http://klee.github.io/docs/coreutils-experiments/
http://klee.github.io/docs/coreutils-experiments/
http://popcon.debian.org/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz

[48] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-
box mutational fuzzing,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2013, pp. 511–522.

[49] H. Han and S. K. Cha, “IMF: Inferred model-based fuzzer,” in Pro-
ceedings of the ACM Conference on Computer and Communications
Security, 2017, pp. 2345–2358.

[50] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-aware code
generation to find vulnerabilities in javascript engines,” in Proceedings
of the Network and Distributed System Security Symposium, 2019.

[51] H. Seo and S. Kim, “How we get there: A context-guided search strategy
in concolic testing,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2014, pp. 413–424.

[52] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the International Conference on Automated Software
Engineering, 2008, pp. 443–446.

[53] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the International Conference
on Software Engineering, 2007, pp. 75–84.

[54] M. Christakis, P. Müller, and V. Wüstholz, “Guiding dynamic symbolic
execution toward unverified program executions,” in Proceedings of the
International Conference on Software Engineering, 2016, pp. 144–155.

[55] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in Proceedings of the ACM Conference
on Programming Language Design and Implementation, 2012, pp. 193–
204.

[56] K. Sen, G. Necula, L. Gong, and W. Choi, “MultiSE: Multi-path
symbolic execution using value summaries,” in Proceedings of the
International Symposium on Foundations of Software Engineering, 2015,
pp. 842–853.

[57] B. Mathis, V. Avdiienko, E. O. Soremekun, M. Böhme, and A. Zeller,
“Detecting information flow by mutating input data,” in Proceedings of
the International Conference on Automated Software Engineering, 2017,
pp. 263–273.

[58] L. Szekeres, “Memory corruption mitigation via hardening and testing,”
Ph.D. dissertation, Stony Brook University, 2017.

[59] W. Miller and D. L. Spooner, “Automatic generation of floating-point
test data,” IEEE Transactions on Software Engineering, vol. 2, no. 3,
pp. 223–226, 1976.

[60] T. R. Leek, G. Z. Baker, R. E. Brown, M. A. Zhivich, and R. P.
Lippmann, “Coverage maximization using dynamic taint tracing,” MIT
Lincoln Laboratory, Tech. Rep. 1112, 2007.

[61] P. McMinn, “Search-based software testing: Past, present and future,” in
Proceedings of the IEEE International Conference on Software Testing,
Verification and Validation Workshops, 2011, pp. 153–163.

[62] M. Souza, M. Borges, M. d’Amorim, and C. S. Păsăreanu, “CORAL:
Solving complex constraints for symbolic pathfinder,” in Proceedings of
the NASA Formal Methods Symposium, 2011, pp. 359–374.

[63] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: An open source
tool for search based software testing of c programs,” Information and
Software Technology, vol. 55, no. 1, pp. 112–125, 2013.

