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Abstract—Although it is common practice for kernel fuzzers
to leverage type information of system calls, current Windows
kernel fuzzers do not follow the practice as most system calls are
private and largely undocumented. In this paper, we present a
practical static binary analyzer that automatically infers system
call types on Windows at scale. We incorporate our analyzer
to NTFUZZ, a type-aware Windows kernel fuzzing framework.
To our knowledge, this is the first practical fuzzing system that
utilizes scalable binary analysis on a COTS OS. With NTFUZZ,
we found 11 previously unknown kernel bugs, and earned $25,000
through the bug bounty program offered by Microsoft. All these
results confirm the practicality of our system as a kernel fuzzer.

I. INTRODUCTION

Software vulnerabilities in kernel code cause serious se-
curity breaches. At the very least, malicious attackers can
produce a Blue Screen of Death (BSoD) on a victim machine.
At worst, attackers can gain unprivileged access to the ker-
nel space, which entails information disclosure or privilege
escalation. For these reasons, the two biggest OS makers, i.e.,
Apple and Microsoft, are offering rewards up to $15,000 and
$30,000, respectively, for reporting a critical vulnerability in
their kernels [3], [57].

Therefore, there has been growing research interest on
kernel fuzzing in both industry and academia [18], [30], [34],
[40], [41], [48], [76]–[78], [84], [91].

One of the key strategies in kernel fuzzing research is
to utilize types and dependencies of system calls (syscalls).
Since syscall arguments are typically nested and dependent
on each other, fuzzers often fail to generate meaningful test
cases without recognizing types of syscalls.

Such an approach is easily achieved by Linux kernel
fuzzers [18], [34], [76], [91] due to its open nature. How-
ever, Windows syscalls are widely unknown and undocu-
mented. Furthermore, their convention frequently changes over
time [38]. Although ReactOS [79] partially provides such
information, it does not account for the latest syscalls.

To our knowledge, there is no existing Windows ker-
nel fuzzer that generally infers type information from ever-
changing syscalls of Windows. Instead, current fuzzers miti-
gate the challenge by (1) focusing on a small subset of the
attack surface, such as font-related APIs [37] and the IOCTL
interface [41], [74], or (2) relying on user-provided knowledge
or harness code [25], [47], [84].

Therefore, we present NTFUZZ, a Windows kernel fuzzer
that leverages static binary analysis to automatically infer

syscall types. At a high level, it runs in two steps. First, it stat-
ically analyzes Windows system binaries—kernel32.dll,
ntdll.dll, and etc.—that invoke syscalls, and infers their
argument types. Then, it uses the inferred types to fuzz the ker-
nel by performing type-aware mutation on syscall arguments.

The key intuition behind our approach is that even though
syscalls are largely undocumented on Windows, known (doc-
umented) API functions often call those syscalls through a
chain of internal function calls. This means, we can bridge
the information gap between documented and undocumented
interfaces with static analysis by propagating the knowledge
from documented functions to undocumented syscalls.

Unfortunately, designing a scalable static analyzer for Win-
dows system binaries is challenging due to their huge size and
interdependency. To statically infer syscall types by analyzing
them, one needs to track both register and memory states while
considering data flows between functions that are located in
multiple different binaries. While there are a number of public
tools focusing on CFG recovery [28], [32], [69] and single-
binary analyses [13], [23], [42], [86], [92], we are not aware of
any practical binary analysis solution that performs an inter-
binary and inter-procedural analysis, in a scalable manner.

We overcome this challenge with a modular analysis, a.k.a.
compositional analysis [2], [15], by designing a novel abstract
domain. At a high level, our analyzer constructs a parameter-
ized summary of each function, which describes the semantics
of a function. When an analyzed function is later invoked from
another function, we instantiate the parameterized summary to
figure out the behavior of the function call. This way, we can
efficiently analyze data flows and syscall types in an inter-
procedural fashion, while avoiding redundant computations.

With the inferred syscall type information, NTFUZZ then
runs a type-aware fuzzing that launches a user application
and intercepts syscalls to perform mutation on their argument
values. This way, NTFUZZ can automatically fuzz a Windows
kernel with minimal manual effort from the user; NTFUZZ
does not require a user to write a harness code for the syscalls
to test, as in kAFL [84] or pe-afl [47].

We evaluate our system on Windows 10, and show that
type information obtained from our static analysis indeed helps
find more kernel crashes. Moreover, NTFUZZ found 11 unique
bugs from the latest version of Windows 10, and four CVEs
were assigned at the time of writing. A total of $25,000 bounty
from Microsoft was awarded to the bugs we reported, which
highlights the practical impact of our work.
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Fig. 1. Simplified architecture of Windows OS.

The contribution of this paper is as follows.
1) We integrate a static binary analysis technique with

Windows kernel fuzzing for the first time.
2) We present a scalable static analyzer on Windows system

binaries to infer the types of Windows syscalls.
3) We present NTFUZZ, a type-aware fuzzing framework

to test Windows kernel with minimal manual effort.
4) We evaluate NTFUZZ on the latest Windows 10, and

discuss 11 unique kernel bugs and four CVEs found.

II. BACKGROUND

In this section, we provide backgrounds required to under-
stand our methodology for Windows kernel fuzzing.

A. Windows Architecture

Figure 1 illustrates a simplified architecture of Windows OS.
User applications access system resources, such as I/O devices,
through a system call (syscall). Typically, those applications
do not directly invoke syscalls by themselves. Instead, they
call a high-level API function, which will internally request a
syscall. For example, to invoke the NtCreateFile syscall,
a user would normally call the CreateFile function located
at kernel32.dll, instead of directly invoking the syscall.
Therefore, NTFUZZ aims at automatically figuring out syscall
types by analyzing call chains from known API functions to
undocumented functions, and to syscalls.

There are more than 1,600 syscalls in Windows 10, and the
majority of them are not documented. Windows API functions
are documented [62], [65], and their actual implementation is
present in built-in system DLL files [55] that we refer to as
system binaries in this paper.

Our technique statically analyzes these system binaries in
order to infer the types of arguments passed to syscalls. Since
there are numerous API functions and DLL files on Windows,
we focus only on the core system libraries that we manually
identified (see Table I). In Windows 10 17134.1, which was
used for our evaluation (§VII-B), 80.4% of the existing syscalls

TABLE I
LIST OF SYSTEM BINARIES THAT OUR STATIC ANALYSIS TARGETS.

Binary Description

ntdll.dll Syscalls and APIs for native applications [56]
kernel32.dll Management of core system resources (e.g. file)
kernelbase.dll —————————–"—————————–
win32u.dll Syscalls for graphic user interface (GUI)
gdi32.dll Graphic device interface to control video displays
gdi32full.dll —————————–"—————————–
user32.dll Management of UI components (e.g. window)
dxcore.dll* Interface for DirectX functionalities
* This file presents on Windows 10 starting from the build 18362.

were invoked at least once from these binaries. Note, we can
extend the list if needed, although it was enough for our
purposes (see §VIII).

B. Static Program Analysis

Static program analysis (static analysis in short) refers to
a methodology for automatically predicting the behavior of
programs without running them [82]. While there is a wide
spectrum of techniques, static analyses can be described using
a general theoretical framework named abstract interpreta-
tion [20], [21]. In abstract interpretation, a concrete program
state is approximated with an abstract domain, and a program
is analyzed with abstract semantics, which subsumes the
concrete semantics of the program.

In the field of static analysis, we say an analyzer is sound, if
the analyzer has no false negative; if a sound analyzer reports
a program as bug-free, then the safety of the program should
be guaranteed. Similarly, we say an analyzer is precise (or
complete), if the analyzer is free from false positives [67]. We
note that both the terms are used for different meanings in
other fields [86]. In this paper, however, we will follow the
traditional convention in static analysis. If the analysis result
happens to be both sound and precise, we will describe the
analysis to be accurate, or correct.

III. MOTIVATION

In this section, we motivate our research by showing a code
snippet taken from one of the CVEs we found (see §VII-E).

Figure 2 presents a simplified version of CVE-2020-0792.
The bug exists in the NtUserRegisterWindowMessage
syscall, which takes in a UNICODE_STRING pointer as input.
The function validates the input fields in Line 11 in order to
make sure that the user-provided pointer (buf) accesses the
right memory region. However, the function skips the entire
check when the length of the buffer (len) has an odd value
in Line 6. The problem is that the LogError function in
Line 7 does not abort the syscall upon execution. Therefore,
one can effectively circumvent the safety check in Line 11 by
specifying an odd length (Length), and an invalid memory
pointer (Buffer). This vulnerability allows an attacker to
access the kernel memory and gain escalated privilege by
carefully crafting the input fields.

From this example, we can make the following important
observations.



1 // Syscall in kernel-mode.
2 NtUserRegisterWindowMessage(UNICODE_STRING* arg) {
3 ... // Sanitize ’arg’.
4 unsigned short len = arg->Length;
5 wchar_t* buf = arg->Buffer;
6 if ( len & 1 ) {
7 LogError(...); // Does not abort.
8 }
9 else {

10 tmp = ((char*)buf) + len + 2;
11 if (tmp >= 0x7fff0000 || tmp <= buf || ... ) {
12 return;
13 }
14 }
15 ... // Access ’buf’.
16 }
17 // API function in user-mode.
18 RegisterWindowMessage(char* s) {
19 UNICODE_STRING str;
20 str.Buffer = malloc(2 * strlen(s) + 2);
21 str.Length = 2 * strlen(s);
22 ...
23 NtUserRegisterWindowMessage(&str);
24 }

Fig. 2. Simplified pseudo-code of CVE-2020-0792 found by NTFUZZ.

First, it is difficult for fuzzers to trigger the bug without rec-
ognizing the type of NtUserRegisterWindowMessage.
A fuzzer needs to know that the input argument of the syscall
is a pointer, and that it should point to a structure of type
UNICODE_STRING. Let us assume that the fuzzer blindly
generates a value without knowing the type information.
It is unlikely for the generated value to have a desired
UNICODE_STRING structure where the Length field is odd
and the Buffer field points to an invalid memory region.

Second, undocumented syscalls are often related to doc-
umented API functions. RegisterWindowMessage in
our example is documented in Microsoft Docs [58], while
NtUserRegisterWindowMessage is not. However, we
can infer the type of this syscall via known type information
of the documented API function. For instance, we can ob-
serve how RegisterWindowMessage initializes the local
UNICODE_STRING structure, using its char* argument.

Third, API-function-level fuzzing may not trigger critical
bugs, even if API functions eventually invoke syscalls. Note
that the caller of RegisterWindowMessage cannot fully
control the input to NtUserRegisterWindowMessage
because RegisterWindowMessage always sets the
Length field with an even number in Line 21. As a result, the
bug in the syscall will never be triggered if we only fuzz the
API function. This highlights the importance of direct syscall
fuzzing.

IV. OVERVIEW

In this section, we first describe the overall architecture of
NTFUZZ (§IV-A). We then present an overview of our modular
analysis (§IV-B) and our running example (§IV-C).

A. NTFUZZ Architecture

Figure 3 illustrates the overall architecture of NTFUZZ,
which comprises two core components: (1) the static analyzer,
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Fig. 3. Architecture of NTFUZZ.

and (2) the kernel fuzzer. At a high level, the static analyzer
takes in a set of system binaries and API specifications
as input, and outputs syscall type information by analyzing
the binaries. The kernel fuzzer then repeatedly runs a seed
application1 while mutating the arguments of the invoked
syscalls based on the type information gathered.

1) Static Analyzer: The static analyzer consists of three
major components. First, the front-end lifts system binaries
into intermediate representations and constructs Control-Flow
Graphs (CFGs). It also parses the given API specification—
the type information of documented API functions—and turns
it into a suitable form for analysis (see §V-A).

Next, the modular analysis engine traverses the inter-
procedural CFGs and observes how the system binaries con-
struct syscall arguments. Specifically, it analyzes how each
argument of documented API functions flows into syscalls.
We sketch the key idea of modular analysis in §IV-B, and
present the detailed design in §V-B.

Finally, the type inferrer decides the argument types of each
syscall based on the analyzed behavior of the binaries. To
improve the accuracy of analysis, we aggregate the information
obtained from multiple callsites of syscalls, and decide the
final argument types (see §V-C).

2) Kernel Fuzzer: This module runs by repeating the fol-
lowing three steps. First, the launcher prepares for syscall
hooking and runs a given seed application. The mutator
then mutates the argument values of each syscall during the
execution of the application. This mutation process is based on
the type information obtained from the static analyzer. Finally,
the crash detector checks if the kernel crashes, and if so, it
retrieves the corresponding memory dump. Otherwise, it does
nothing. These steps iterate until a timeout is reached. We
describe the design details of each component in §VI.

B. Modular Analysis Algorithm

The key aspect of NTFUZZ is the use of modular analy-
sis [2], [15] to infer syscall types. At a high level, modular
analysis computes the whole program behavior by (1) splitting
the target program into multiple modules, and (2) assembling
the analysis results of each component. NTFUZZ divides
a program into multiple functions. For each function, the

1Note our seed is different than seed inputs used in regular fuzzers [80].



Algorithm 1: Modular Analysis Algorithm.
1 function Analyze(CFGs, callGraph, APISpec)
2 summaries← {}
3 typeInfo← ∅
4 for f in TopoSortReverse(callGraph) do
5 s ← Summarize(CFGs[f ], summaries, APISpec)
6 summaries[f ]← s
7 typeInfo← typeInfo ∪ CollectType(s)

8 return DecideType(typeInfo)

analyzer investigates its semantics and constructs a summary
to capture its behavior. When a summarized function is later
called by another function, we refer to this summary instead
of analyzing the callee again. This way, the behavior of the
whole program is composed in a bottom-up style.

Algorithm 1 describes the pseudo-algorithm of our mod-
ular analysis for syscall type inference. The analysis takes
in CFGs (CFGs), an inter-binary call graph (callGraph),
and a parsed API specification (APISpec) as input, and
returns inferred syscall type information. The algorithm first
topologically sorts the call graph in Line 4, and traverses it
starting from the leaf nodes. Each function in the call graph
is then summarized with the abstract interpretation framework
(see §V-B) in Line 5. A summary of a function f captures (1)
which syscalls are invoked by f with which arguments, and
(2) how the memory state varies by running f . Note that we
run this analysis from the leaf nodes in order to reuse their
function summaries in the callers. In Line 8, DecideType
emits the final syscall types using the information accumulated
from each function within the loop (see §V-C).

There are several benefits of using the modular analysis.
First, our analysis is naturally inter-procedural and context-
sensitive [73], [85] as we utilize function summaries. Second,
our analysis operates on each function only once. This can
greatly reduce the cost of analysis compared to traditional
global analyses [9], [72], which can potentially analyze the
same function multiple times [71].

Of course, such benefits come at a price. For example, as
modular analysis requires callees to be analyzed before the
caller, it cannot soundly handle recursive calls or indirect calls.
This is an inherent limitation of this technique, and other
modular analysis tools, e.g., Infer [15], suffer from the same
issue. In our implementation, recursive calls or unresolved
indirect calls are unsoundly ignored as NOPs. However, the
evaluation in §VII-B indicates that our analyzer can still collect
meaningful information and yield a fair degree of accuracy
despite such problems.

C. Running Example

We now present a running example to give a brief overview
of our modular analysis. Figure 4 shows our running example,
which consists of three functions. We assume that the function
f is the only documented API function. That is, we know
the exact type of f. For simplicity, we consider malloc
and syscall as built-in primitive functions for memory
allocation and syscall invocation, respectively. Note that we

1 // Documented API.
2 void f(HANDLE x) {
3 p = (char *)malloc(8);
4 h(p, x);
5 h(p + 4, 10);
6 g(p);
7 }
8 void g(y) {
9 syscall(20, y);

10 }
11 void h(a, b) {
12 *a = b;
13 }

(a) Example in C.

f

gh

(b) Call Graph.

/* struct begin */
+0: HANDLE
+4: int
/* struct end */

(c) Inferred struct y.

Fig. 4. Running example for modular analysis.

show this example in C for ease of explanation, but our actual
analysis runs on a binary. Therefore, the types of the arguments
and variables are not known. To indicate this, we deliberately
omit type notations for g and h.

Our goal here is to figure out the types of the syscall
arguments in Line 9.

1) Walk-Through: NTFUZZ starts by topologically sorting
the call graph in Figure 4b and traverses the sorted nodes
in a reverse order starting from leaf nodes. There are two
possible orders: either h → g → f or g → h → f. Assume
that NTFUZZ selects the former. It will firstly analyze h and
produce a summary including the information about the side
effect “*a = b”, which means the memory location pointed
to by the first argument (a) is updated with the value of the
second argument (b).

Next, NTFUZZ produces a summary for g, which contains
a syscall with a constant 10 as its first argument and y
as its second argument. In this case, there is no side effect
to summarize for g. Note that our function summaries are
parameterized. That is, a summary can be concretized later
into different instances based on the provided arguments.

We now compute the summary of f by reusing the existing
summaries for h and g. First, we obtain the type of f from
the given API specification. We then instantiate and apply the
summarized side effect of h, and find out how the heap object
generated in Line 3 is updated via function calls (Line 4–
5). When p is passed as an argument to g in Line 6, we
instantiate the summarized syscall information of g, which
reveals that the second argument of the syscall, in Line 9, is
a pointer to a structure. The structure has a HANDLE field at
the offset zero (Line 4), and an integer field at the offset four
(Line 5). Therefore, we can identify the type of the second
syscall argument as in Figure 4c. Note that the type of the first
argument is already known during the analysis of g. Thus, at
this point, we have complete type information for the syscall.

2) Challenges: Although the running example is deliber-
ately simplified, accurately inferring the syscall type is not
trivial for the following reasons.

First, our analysis should be able to trace data flows across
function boundaries. In particular, it should understand data
flows from f to g in order to correctly identify the syscall
type: we should realize that the argument y of syscall is



from p in Line 3.
Furthermore, our analysis should be able to track the

memory states along program executions in an inter-procedural
manner. For example, it should know how the heap object,
which is pointed to by p, is allocated and how its contents
are set via h. In this case, the function h has an assignment
to a pointer, which produces a memory side effect. Therefore,
binary analysis tools that only support register data flows or
intra-procedural analyses cannot handle this.

V. STATIC ANALYZER DESIGN

This section presents our design of the static analyzer
module, which is responsible for syscall type inference.

A. Front-End

The primary role of the front-end is to parse Windows
system binaries and documented API specifications for our
modular analysis.

We use B2R2 [36] to parse and lift binaries, which is fast
enough to deal with large system binaries. B2R2 lifts binary
code into intermediate representations (IRs), which describe
semantics of binary code using only a few primitive operations.
Figure 5 shows a simplified syntax of B2R2 IR. Note, we
deliberately omitted many expressions for ease of explanation.
For example, we removed unary operations and even branch
statements except for call statements as their semantics are
straightforward. The lifting process runs recursively by fol-
lowing jump targets and constructs a CFG for each function.
With these CFGs, we build an inter-binary call graph.

To reduce the size of the call graph, we filter out unneces-
sary nodes, i.e., functions, from it. First, we identify syscall
stub functions that execute a sysenter instruction, and then
traverse back the call graph from the identified stub functions
up to a documented API function. Note we stop the traversal at
a documented API function because we already have complete
type information for documented functions, and there is no
benefit from further analyzing their callers. We accumulate all
the functions encountered, including the stub functions, and
denote them as S1.

Next, we collect all reachable functions from S1 and let the
resulting set be S2. This is to fully capture side effects incurred
by the functions called from S1. Finally, we prune the original
call graph by leaving only the functions that belong to S1∪S2.

The front-end is also responsible for parsing Windows API
specifications. Currently, the specifications are obtained from
the header files in Windows 10 SDK [65]. We parse the
function declarations in these files and obtain type information
for each function. The declarations also include useful annota-
tions written in Source Annotation Language (SAL) [63]. For
example, SAL can denote what is the size of an array type
argument. We parse these annotations too and use them for
array type inference (see §V-C2).

B. Modular Analyzer

Recall from §IV-B, our modular analysis summarizes the
behavior of each function with abstract interpretation [20].

exp ::= reg // Register
| [ exp ] // Memory load
| int // Number
| exp ♦b exp // Binary operation

stmt ::= Put (reg, exp)
| Store (exp, exp)
| Call (f )

Fig. 5. Simplified subset of B2R2 IR syntax for explanation.

(Abstract Integer) I = a ∗ symbol + b | ⊥ | >
(Abstract Location) L = Global(Z)

| Stack(function× Z)
| Heap(allocsite× Z)
| SymLoc(symbol × Z)

(Type Constraint) T = τ
| SymTyp(symbol)

(Abstract Value) V = I× 2L × 2T

(Register Map) R = reg → V
(Memory) M = L→ V
(Abstract State) S = R×M

Fig. 6. Our abstract domains.

At a high level, we perform a flow-sensitive analysis on each
function, which computes an abstract program state for each
point in the CFG. With these abstract states, we summarize
each function by observing (1) which values are passed as a
syscall argument, and (2) how the state changes between the
entry and exit node of the function.

1) Abstract Domain: We define our abstract domains in
Figure 6, and present their join operation in Appendix A.
Z denotes the integer set, and symbol is a new symbol
introduced at each argument of a function. Since we do not
know the value of a function argument at its entry, we initialize
every argument value with a fresh symbol.

Our abstract value V is a triple of an abstract integer, a set
of abstract locations, and a set of type constraints.

First, abstract integers represent a numeric value that a
register or a memory cell can hold. We use a linear expression
with a symbol to represent an abstract integer. It can be either
concrete, when a = 0, or symbolic, when a 6= 0.

Second, abstract locations present a potential location of a
value. We have four different kinds of locations: Global,
Stack, Heap, and SymLoc. Global(a) means a global
variable location at the address a, Stack(f,o) represents
a local variable located in the stack frame of f at the offset
o, and Heap(a,o) represents a memory cell located at the
offset o of a heap object allocated from the address a. We
coalesce the heap locations based on their allocation site [39].
SymLoc(s,o) indicates a symbolic pointer with the pointer
symbol s and the offset o from the pointer. Note that in static
analysis, a pointer can point to multiple locations due to over-
approximation. Thus, our abstract value entails 2L.

Third, we embed type constraints in our abstract domain as
in [19]. A type constraint can have either a concrete type τ ,
or a symbolic type SymTyp(α), where alpha is a symbol.

For example, consider a function that takes in a single
argument as input. The argument can either be an integer
or a pointer, and we take both cases into account. We first
assume that the argument has an abstract integer 1 ∗ α1 + 0



V(reg)(S) = S[0](reg)

V([e])(S) =
⊔
{S[1](l) | l ∈ V(e)(S)[1]}

V(i)(S) =


〈0, φ, φ〉 if i = 0

〈⊥, {Global(i)}, φ〉 if i in data section

〈i, φ, {integer}〉 otherwise

V(e1♦b e2)(S) = binop(♦b, e1, e2, S)

(a) Evaluation of expressions (exp).

F(Put(r, e))(S) = 〈R[r 7→ V(e)(S)],M〉, where S = 〈R,M〉
F(Store(e1, e2))(S) = 〈R, update(V(e1)(S)[1])(V(e2)(S))(M)〉,

where S = 〈R,M〉

update(L)(v)(M) =

{
M [l 7→ v] if L = {l}
M [l1

w7−→ v]...[ln
w7−→ v] if L = {l1, ..., ln}

F(Call(f))(S) =

{
apply(δ, S) if f has side effect δ

S otherwise

(b) Evaluation of statements (stmt).

Fig. 7. Abstract semantics of our static analyzer.

(or simply α1), where α1 is a fresh symbol. We also consider
the abstract location of the argument as it can be a pointer.
Thus, we introduce a new symbol α2 for representing a
symbolic location SymLoc(α2, 0). Since we do not know
the type constraint of the argument, we create a symbolic
type constraint SymTyp(α3). Finally, we subsume all the
above information to initialize an abstract value V for the
argument as 〈α1, {SymLoc(α2, 0)}, {SymTyp(α3)}〉. Once
we finish analyzing the function, we will obtain a summary
parameterized with these symbols.

Note our abstract domain differs from that of Value Set
Analysis (VSA) [5], [6]. VSA uses a variant of interval domain
to trace offsets of abstract locations, which enables a sound
analysis of memory access range, while making it prone to
imprecision. Since our focus is not on the soundness, we seek
for more precise results by giving up tracing complex offsets.
Instead, we focus on tracking constant offsets with Z. We
further justify our design in §V-B2.

2) Abstract Semantics: We now define our abstract seman-
tics on the B2R2 IR shown in Figure 5. Recall that the IR
is largely simplified for ease of explanation, and our actual
implementation of NTFUZZ handles the complete syntax.

First, we define V : exp→ S→ V that evaluates the given
expression exp within the provided abstract state S to return
an abstract value V. Figure 7a presents the semantics. Here,
we use X[n] to denote the (n+ 1)-th element of a tuple. For
example, for an abstract state S ∈ S, S[0] returns the register
map (R) of the abstract state.

Register read and memory load expressions are trivial to
evaluate: we simply look up the given abstract state S and
return the corresponding value. Note that the four kinds of ab-
stract locations defined in Figure 6 are naturally distinguished
as separate regions during the memory load.

Evaluating a number expression involves range checks.
When a given number is zero, we safely ignore its type as we

cannot distinguish between a NULL pointer and a constant
zero. When a number is within the range of data sections, we
consider it as a global pointer. For the rest of the cases, we
consider the number as an integer.

Binary operation binop is formally defined in Appendix B,
and intuitively it performs arithmetic operations with the
abstract values and generates type constraints if possible. For
example, a multiplication of two values should have an integer
type. When computing a binary operation, we also calculate a
new offset of the abstract location L. To explain this semantics,
let us consider the following x86 snippet of a function f.

mov esi, ebp
sub esi, 40 # esi: array base
lea edi, [esi+4*ecx] # ecx: array index

This code computes the address of an array element indexed
by ecx. We will assume that ebp carries the initial stack
pointer at the entry of f, which will be converted as an abstract
location Stack(f, 0) in our domain. Ideally, traditional VSA
will try to capture the exact range of ecx with its congruence
interval domain, and calculate the accurate memory range
pointed to by edi. However, if the range of ecx is imprecisely
approximated to >, i.e., [−∞,∞], edi will be considered as
pointing to any arbitrary memory location.

To mitigate such problems, we trace only the constant
offsets, and ignore array index terms. For the sub instruction
in this example, we calculate the abstract location assigned in
esi as Stack(f,−40). However, for the lea instruction, we
ignore the added index term, and simply assign the abstract
locations of esi to edi. Intuitively, ignoring array index
means coalescing all the array elements into a single abstract
location. Such an array-insensitive design is indeed common
for static analyzers [72], [88].

We now define F : stmt→ S→ S that evaluates the given
statement stmt within the given abstract state and returns a
new abstract state. Figure 7b shows the definition of F . We
use m[k 7→ v] to denote a strong update of m with a new
mapping from k to v. Meanwhile, m[k

w7−→ v] means a weak
update: m is updated with a new mapping from k to m(k)tv.

The abstract semantics of Put and Store are straight-
forward: they simply update the given abstract state with an
evaluated value. For the rationale behind distinguishing strong
and weak update, see [22].

The core semantics of Call is to apply the summarized
side-effect δ of the called function (see Appendix B for more
details of function apply). If the callee f is a documented
function, we can also update the type constraints of its
arguments accordingly. Additionally, we manually encode the
semantics for several core functions to improve the accuracy of
our analysis. For example, we encode the memory allocation
semantics of RtlAllocateHeap instead of analyzing the
function. Note writing custom semantics for core functions is
a common practice in static analysis [26], [83].

3) Comparison against VSA: As we discussed in §V-B2,
VSA can soundly analyze memory accesses by tracking
location offsets with interval domain. Unfortunately, it is
notoriously difficult to achieve precise interval analysis in



practice, even with source code [46], [72]. When the interval
analysis yields imprecise results like [−∞,∞], pointer values
also lose precision in VSA. Meanwhile, our semantics design
is unsound, but it can always track a concrete offset for abstract
locations. That is, we trade-off soundness for precision.

Note, unlike our domain, the VSA domain does not suit
modular analysis well. To enable modular analysis with VSA,
we must extend its domain to support symbolic intervals.
At the entry of a function, we must initialize its argument
to have a symbolic location with symbolic boundaries, such
as SymLoc(s, [α, β]). However, when the offset interval is
symbolic, it becomes extremely difficult to handle memory
operations in the abstract semantics. In Appendix C, we
discuss more details about possible strategies to cope with
this challenge, and explain why they are imperfect.

4) The Trade-Off: Since our goal is not at sound program
verification, we can compromise the soundness of our analysis
to improve its scalability and precision. We briefly summarize
some of the design choices we made for the trade-off.

During the intra-procedural analysis, we perform loop un-
rolling, which is a popular technique that many static analyzers
adopt to control the soundness [31], [50]. Also, we deliberately
allow strong updates for locations that should be always
weakly updated (e.g. heap locations). Note that F in Figure 7b
only checks whether the update is on a single location or not.

We also found that functions in real-world binaries often
take in nested pointers as an argument, which involves nu-
merous memory updates. As a result, we frequently observe
an explosion in the number of side effect entries. According
to our experience, soundly summarizing all these side effects
made the analyzer unscalable.

Therefore, we introduce NSE parameter, which sets the
maximum bound on the number of update entries to store
for a function summary. That is, we unsoundly prune out the
entries over this number. In §VII-B, we evaluate the impact of
NSE on the accuracy and scalability of the analysis.

C. Type Inferrer

The type inferrer decides syscall types based on the results
obtained from the modular analyzer.

1) Structure Inference: If a syscall argument is not a
pointer, we can trivially know its type from our abstract
domain in Figure 6. However, if the argument is a pointer, we
have to carefully inspect the analyzed memory state in order to
infer the type of the pointee. Let us revisit the running example
in Figure 4. At the syscall in Line 9, the abstract value of
the second argument should be 〈⊥, {Heap(Line 3, 0)}, φ〉.
Therefore, we look for the abstract memory cells, i.e. abstract
locations, that correspond to the heap object allocated in
Line 3. That is, we search for any abstract memory cell that
is in the form of Heap(Line 3, ∗), where ∗ indicates any
offset. This way, we can obtain two abstract memory cells
Heap(Line 3, 0) and Heap(Line 3, 4), and their abstract
values to obtain the structure in Figure 4c.

On the other hand, it is more challenging to infer a structure
type allocated on the stack. Consider an example in Figure 8a,

1 void f(void) {
2 struct S s;
3 int k;
4 s.x = 1; // int field
5 s.y = 2; // int field
6 k = 3;
7 syscall(&s);
8 print(k);
9 }

(a) Example with struct.

1 void f(void) {
2 int i = 1;
3 int j = 2;
4 int k = 3;
5 syscall(&s);
6 print(k);
7 }

(b) Example without struct.

s.x
s.y

k

...

Low

High

(c) Stack layout for (a).

i

j

k

...

Low

High

(d) Stack layout for (b).

Fig. 8. Example for the inference of structure allocated on stack.

where the function f allocates a structure s on the stack. At
the binary level, the initialization of the two int fields cannot
be distinguished from the initialization of two local variables.
That is, the binaries obtained from compiling the two different
sources in Figure 8a and Figure 8b will be identical. Therefore,
if a syscall argument is a pointer to the stack, we cannot
decide whether it is a pointer to a structure (e.g. &s) or a
singleton variable (e.g. &i). If we conservatively consider it
as a structure, we have to determine its boundary. We may
assume that the structure continues until the end of the stack
frame, but we will end up having too many spurious fields.

We heuristically address this problem by observing memory
access patterns of a function. First, when an adjacent stack
variable is defined but never used, we consider it as a structure
field passed to the syscall. Second, if such a variable is used
without any definition, we consider it as a structure field
initialized by the syscall.

Assume that we are inferring the syscall type at Line 7
of Figure 8a. To decide the boundary of the structure s, we
first examine the most adjacent next location of it, which is
s.y in this case. Since this location is defined at Line 5 but
not used anywhere within the function, we conclude that this
location must be a part of the structure s. In contrast, for
the next adjacent location (int k), we can observe its use
at Line 8. Therefore, we decide that this location does not
necessarily belong to the structure. To avoid including spurious
fields, we conclude that the structure has only two fields.
For finding undefined/unused locations, we use the standard
reaching definition analysis and liveness analysis [1].

2) Array Inference: There are mainly two ways to infer
array types. First, a known array type from a documented API
may flow into a syscall. We found that an array size is often
declared with a variable, which means that the array size is
passed to a function as a separate argument. Let us consider the
example in Figure 9. The declaration of the Data structure is
annotated with the SAL annotation _Field_size_, which
describes that the size of the array buf is specified by the
field n. When a Data structure flows from a documented API



1 void f(struct Data* d) {
2 syscall_1(d->buf, d->n);
3 }
4

5 void g(x) {
6 p = malloc(x);
7 memset(p, 0, x);
8 syscall_2(p, x);
9 }

(a) Example snippet in C.

struct Data {
_Field_size_(n)
int* buf;
size_t n;

};

(b) The Data structure.

Fig. 9. Example for the array inference.

function to the function f, we know that the first argument of
the syscall_1 is a pointer to an int array, and the second
argument of it is the size of the array.

Second, NTFUZZ can also directly infer an array type by
observing the memory allocation pattern. Let us consider
function g in Figure 9. Recall from §V-B, we initialize the
argument x with a symbolic value. In Line 8, we can figure
out that the size of the heap object pointed to by p is always
the same as x. Therefore, we can infer that the first argument
of the syscall is an array pointer, whose size is given by the
second argument of the syscall.

3) Resolving Conflicts: Due to the over-approximating
nature of static analysis, we inevitably encounter con-
tradictory type constraints. For example, our analysis
can return an abstract value for a syscall argument as
〈α, φ, {handle, integer}〉. When such contradictory type con-
straints are encountered, a sound type system like TIE [45] will
output a > type. However, since the goal of our analysis is to
help in type-aware kernel fuzzing, we try to emit more precise
type information instead of returning too many > types.

To this end, we aggregate the type information obtained
from different call sites of a syscall. The key intuition here is
that since the same syscall is often invoked from multiple dif-
ferent functions, we can have a majority vote from them. While
some of them may suffer from imprecise results, we expect the
remainders to yield accurate type information. Therefore, for
each syscall argument, we collect type constraints from every
call site of the syscall, and select the majority type as its final
type. Note that such a decision has to be recursively performed
in certain cases. For example, when a syscall argument is a
pointer type, we should determine the type of the pointee again
with the majority decision.

D. Implementation

To implement the binary front-end, we imported the B2R2
project [36], and wrote 739 source lines of our own F# code.
For the API specification front-end, we wrote 1,854 source
lines of F# code. We also wrote 1,239 lines of Lex/Yacc rules
and used FsLexYacc [89] package to automatically generate
the parser code for SDK header files. Finally, the core engine
for static analysis and type inference is implemented in 6,227
source lines of F# code. Although our analyzer currently
targets Windows binaries only, the idea is general enough to
be extended to other OSes. The main engineering challenge is
on modifying the front-end.

VI. KERNEL FUZZER DESIGN

In this section, we present the design details of the kernel
fuzzer module, which utilizes type information obtained from
the static analyzer and runs type-aware fuzzing on syscall
interfaces to find kernel vulnerabilities.

A. Launcher

Our kernel fuzzer runs by intercepting syscalls requested by
a seed application. Specifically, it mutates syscall arguments
encountered during the execution of the program. This type
of kernel fuzzing technique is often referred to as hooking-
based fuzzing [8], [74]. Hooking-based fuzzers can easily
explore deep kernel states by means of valid syscall sequences
generated from a regular program execution.

It is crucial for hooking-based fuzzers to provide proper
user inputs to the seed application in order to observe various
syscalls. Since most Windows applications require GUI inter-
actions, such as clicking buttons or dragging icons, hooking-
based fuzzers typically run with a proxy script that per-
forms GUI interaction. NTFUZZ has the same requirements.
Therefore, we manually wrote a Python script for each seed
application listed in §VII-A for our evaluation. Although such
manual effort is inevitable, writing a script for GUI interaction
does not require domain-specific knowledge and expertise as
in template-based fuzzers that require writing harness code,
e.g., kAFL [84]. In our experiment, the size of the scripts
used for each application was only 29 SLoC on average.

We implement syscall hooking by directly modifying the
System Service Descriptor Table (SSDT) [10]. Note that on
x86-64 Windows, Kernel Patch Protection [59] prevents this
hooking mechanism. Therefore, we have to use Windows
debugging APIs [54] to hook syscalls in x86-64 Windows.
Currently, NTFUZZ targets x86 Windows, since hooking SSDT
incurs less overhead than relying on debugger APIs.

B. Mutator

We address two technical challenges in designing our syscall
mutator. First, our mutator should be aware of type information
obtained from the static analyzer (type-aware mutation in
§VI-B1). Second, our mutation should not get stuck by syscall
error handlers (lazy mutation in §VI-B2).

1) Type-Aware Mutation: Our mutator changes its mutation
strategy based on the type of a target syscall argument.

• Integer types (int, long, ...). We adopt the mutation
strategies employed by AFL [99], which are proven to be
effective for finding bugs. More specifically, we randomly
choose one of the four operations: (1) bit flipping, (2)
arithmetic mutation, (3) trying extreme values such as 0
or INT_MAX, (4) generating a completely random value.
During these mutations, we consider the width of an
integer, as well.

• String types (char*, wchar_t*, ...). We perform three
different mutations at random: (1) randomly choose a
character and replace it with a random character, (2)
extend the string with a random string, or (3) randomly
truncate the string.



Algorithm 2: Hooking-based Fuzzing Algorithm.
1 function Fuzz(seedApp, typeInfo)
2 cntList← []
3 for i in 1 to ITER_N do
4 proc← Launch(seedApp)
5 cntList.Add(CountSyscall(proc))

6 avgSysCnt← Average(cntList)
7 while true do
8 n← RandInt(avgSysCnt)
9 proc← Launch(seedApp)

10 MutateSyscall(proc, typeInfo, n)

• Handle type (HANDLE). We do not perform mutation for
HANDLE because passing incorrect handle values often
makes syscall handlers prematurely return with an error.

• Struct types. We simply perform type-aware fuzzing on
every field in a structure.

• Array types. If we know the size of the target array (from
our analysis in §V-C2), we simply iterate through each
element of an array and perform type-aware mutation.
Otherwise, we consider the target array as a singleton
array, and mutate only the first element.

• Pointer types. We mutate both pointee value and pointer
value. To mutate pointee values, we recursively follow the
pointee type and perform type-aware mutation. For exam-
ple, when a pointer points to a structure, we recursively
traverse every field of the structure until we meet a non-
pointer type and mutate them. To mutate pointer values,
we use the similar strategies used for integer values.

Of course, mutating every syscall argument will likely lower
the chance of finding bugs; the syscall sequences will be likely
invalid. Therefore, NTFUZZ controls the degree of mutation
with a configuration parameter called mutation probability. For
every chance of mutation, we decide whether to mutate the
argument or not based on this probability. Let us denote the
mutation probability by p. Our mutator will uniformly sample
a value between 0 and 1 for every mutation candidate, and
perform a mutation only when the sampled value is below p.

2) Lazy Mutation: Although hooking-based fuzzing is ef-
fective in generating meaningful syscall sequences, there is a
caveat. When performing hooking-based fuzzing, the syscall
handlers in kernel may return an error, and user-level code
often terminates its execution upon detecting such errors. As
a result, syscalls requested earlier during an execution of a
seed program have more chance to be mutated, leading to a
considerable bias. Error handling routines help in writing se-
cure code, but they necessarily impede hooking-based fuzzing.

To mitigate this problem, we perform a novel mutation
strategy that we call lazy mutation. The key intuition is to
hold mutation off until a random point is reached. Algorithm 2
presents the idea. In Line 3-6, we first estimate the number of
syscalls invoked by a seed application (seedApp) when there
is no mutation. Particularly, we measure the average count
of syscalls over ITER_N executions of seedApp, where
ITER_N = 3 in our current implementation. In Line 7-10,

we randomly choose a number between 0 and avgSysCnt
for every iteration, which determines the number of syscalls
to skip. The MutateSyscall function starts mutation only
after the first n syscalls are executed.

C. Crash Detector

Unlike user-level fuzzers, kernel fuzzers should deal with
system reboots because the entire system will shut off with
BSoD whenever we find a kernel crash. Therefore, we con-
figured our Windows VMs to create a memory dump when
the system crashes. When the system reboots, the fuzzer will
discover the crash dump file and send it to the host machine.
Also, we made our fuzzer to store the recent syscall payloads
in memory, so that memory dumps provide useful information
to analyze and reproduce the crashes.

D. Implementation

We implemented the fuzzer’s top-level logic (Fuzz of Al-
gorithm 2) with 196 source lines of python code. The hooking
and mutation logics (MutateSyscall) are implemented as
a kernel driver, which is written in 2,724 source lines of C/C++
code. This driver is loaded in kernel space, and installs syscall
hookers as described in §VI-A. It also identifies the syscalls
invoked from the seed application, and applies the type-aware
mutations described in §VI-B1.

VII. EVALUATION

In this section, we address the following research questions.

RQ1 How accurate and scalable is our static analysis? How
is it affected by NSE? (§VII-B)

RQ2 How does the mutation ratio affect the effectiveness of
kernel fuzzing? (§VII-C)

RQ3 Does the type-aware fuzzing strategy indeed help in
finding more bugs? (§VII-D)

RQ4 Can NTFUZZ find previously unknown bugs from the
latest version of Windows? How does it compare with
existing fuzzers? (§VII-E)

A. Experimental Setup

1) Runtime Environment: For the evaluation of the static
analyzer (RQ1), we used a desktop machine with an Intel
i7-6700 3.4GHz CPU and 64GB of memory. For the rest
of the experiments (RQ2–RQ4), we used server machines
by assigning two cores of Intel Xeon E5-2699 2.2GHz CPU
and 4GB of memory to each VM running under VirtualBox-
6.1.0 [75].

2) Windows Versions: We used two versions of x86 Win-
dows 10 for the evaluation. For the self-evaluation with differ-
ent parameters (RQ2 and RQ3), we used an old Windows 10
17134.1 build, released in April 2018, because we can easily
evaluate the bug-finding ability of NTFUZZ with more number
of confirmed bugs. For the real-world evaluation (§VII-E), we
used Windows 10 18362.592 released in January 2020, which
was the latest version at the time of evaluation.
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Fig. 10. The accuracy and speed of static analyzer with different NSE values.

3) Seed Applications: Recall from §VI that NTFUZZ re-
quires a seed application to operate. Therefore, we manu-
ally collected eight user applications from various categories:
AdapterWatch 1.05, Chess Titans [96], DxDiag, PowerPoint
2019 10361.20002, SpaceSniffer 1.3.0.2, SumatraPDF 3.2,
Unity Sample [90], and WordPad. We used these seed ap-
plications for all our fuzzing experiments.

B. Performance of Static Analyzer

Does our static analyzer output accurate syscall type infor-
mation within a reasonable amount of time? To answer this
question, we ran our static analyzer on the system binaries
(Table I) obtained from Windows 10 17134.1.

1) Accuracy of the Analysis: To evaluate the accuracy of
our static analysis, we first had to find documented syscalls
for establishing ground truth data. We collected documented
syscalls from Microsoft Docs [60], [61], [64], [66], and filtered
out syscalls that are not called from the system binaries. As
a result, we obtained 64 syscalls and their 326 arguments as
the ground truth.

Figure 10a describes how accurately our static analyzer
performs. The Y-axis denotes the percentage of correctly
identified syscall argument types. With NSE from 50 to 100,
our analyzer was able to correctly infer 69% of the syscall
arguments. Recall from §V-B4 that NSE parameter decides the
degree of soundness of our analysis. When NSE is too low,
the analyzer ignores side effects and yields a lower accuracy.
When NSE is too high, the analyzer soundly captures side
effects, but it becomes prone to over-approximation.

To further understand the inaccuracy result of our analyzer,
we examined why our analyzer returns incorrect types for 31%
of the cases when NSE = 50. The most significant cause was
the use of a NULL pointer. If every call site of a syscall we
analyzed passes a NULL value for a pointer-type argument,
we have no means to infer that type by just looking at the
binary. Another major cause we found was C structures located
on the stack. As discussed in §V-C1, this is another inherent
limitation of binary analysis.

We note that a 69% accuracy is already high enough for
the purpose of fuzzing because this means our fuzzer can
perform type-aware mutation on 69% of the syscall arguments
it encounters. As we show in §VII-D, our type analysis result
indeed helps NTFUZZ find 1.7× more unique crashes on
Windows kernel.

TABLE II
BASIC STATISTICS OF OUR TARGET SYSTEM BINARIES.

Binary Size (KB) # Funcs # BasicBlks # Instrs

ntdll.dll 1,582 3,303 63,432 241,012
kernelbase.dll 1,942 2,599 52,483 193,436
kernel32.dll 622 971 19,771 73,290
win32u.dll 101 1,244 2,448 3,672
gdi32.dll 132 1,135 3,797 12,648
gdi32full.dll 1,432 1,716 36,572 140,454
user32.dll 1,496 2,012 35,833 128,480

Total 7,307 12,980 214,336 792,992
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Fig. 11. The number of unique crashes found with each mutation probability.

2) Scalability of the Analysis: Although our static analysis
can be considered as a pre-processing step, it should be
efficient enough to handle multiple Windows system binaries.
To evaluate the scalability of our static analyzer, we first
computed several statistics about the system binaries that our
static analyzer had to deal with. We then computed how long
it took to run our analyzer on those binaries.

Table II summarizes the size of code analyzed by our
system. Recall from §V-A that NTFUZZ selectively analyzes
functions that can affect syscall arguments in order to reduce
the analysis cost. Still, our analyzer had to deal with the
semantics of more than 12K functions and 792K instructions
in total. These numbers indeed confirm the need for scalable
binary analysis.

Figure 10b describes how long it takes for our analyzer
to infer syscall types with each NSE parameter. As NSE

gets higher, we naturally spend longer time on the analysis.
Surprisingly, though, the total analysis time was only within a
few hours for all cases. This result highlights that our design
choices described in §IV-B and §V indeed enabled a scalable
binary analysis for syscall type inference.

In the following fuzzing experiments, we use the type
information obtained with NSE = 50 as the experimental
results imply that this configuration strikes a good balance
between the scalability and accuracy of the analysis.

C. Deciding Mutation Parameter for Fuzzing

Previous works [16], [30] have shown that mutation config-
uration greatly influences the effectiveness of fuzzing. There-
fore, we also evaluate the impact of mutation configuration on
our system. As we described in §VI-B1, NTFUZZ employs a
user-configurable parameter p, the mutation probability.
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Fig. 12. The number of kernel crashes found over time, respectively with
type-aware fuzzing and type-unaware fuzzing.

To observe the impact of the mutation probability, we ran
NTFUZZ on the Windows 10 17134.1 with seven different p
values: p = 0.01 × 2n, where n ∈ {−3,−2, ..., 3}. For each
p, we ran NTFUZZ for 48 hours with each of the eight seed
applications. This sums up to a total of 384 (= 48× 8) hours
of fuzzing for each p. We repeated the experiments five times
and reported the average numbers with ranges in Figure 11.

When mutation probability is too low, NTFUZZ has less
chance to mutate syscall arguments, and thus, it finds fewer
bugs. On the other hand, when the mutation probability is
too high, the seed program terminates too early due to syscall
errors even before it reaches a meaningful program state. In
our experiments, NTFUZZ with mutation probability p = 0.01
found the greatest number of crashes on average.

Next, we further investigated the crashes found with each
mutation probability, and noticed that different p parame-
ters report different sets of crashes. For example, although
p = 0.01 produced the most crashes, one of the crashes
we observed was found only with p = 0.08, but not with
p = 0.01. This is not surprising, because the optimal mutation
probability can be different for each different bug [16].

Based on this observation, we ran an additional experiment
with variable mutation probability. That is, for each execution
of a seed application, we randomly chose one of the seven
mutation probabilities, instead of using a fixed one. The dashed
line in Figure 11 presents the average number of unique
crashes found with this strategy. While it found slightly more
crashes than p = 0.01, the difference was not significant.

Nonetheless, we decided to use the variable mutation prob-
ability for the rest of the fuzzing experiments. This is to
avoid potential overfitting of our system. For example, if we
use a different set of seed applications, the optimal mutation
parameter may change accordingly. By using this strategy, we
expect our system to adapt flexibly to such changes.

D. Impact of Type Information On Fuzzing Effectiveness

We now evaluate whether our static analysis is indeed
helpful for effective fuzzing. To confirm the impact of type
information on NTFUZZ, we ran NTFUZZ and compared the
number of crashes found with and without type information.
For type-aware fuzzing, we simply ran NTFUZZ with the type
information obtained in §VII-B. For type-unaware fuzzing, we
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Fig. 13. The impact of type inaccuracy on fuzzing effectiveness.

modified NTFUZZ to disable our type-aware mutation, and
made it simply use the integer mutation strategy only.

Figure 12 shows the number of crashes found over time.
Again, we ran NTFUZZ for 48 hours with each seed appli-
cation, and repeated the experiments for five times. On aver-
age, NTFUZZ found 130.6 crashes (with standard deviation
σ = 15.2) and 24.4 unique crashes (σ = 2.1) with type
information. Without type information, however, it found only
60.6 total crashes (σ = 5.2) and 14.6 unique crashes (σ = 0.9).
With a Mann-Whitney U test, we conclude that type-aware
fuzzing finds significantly more unique crashes than type-
unaware fuzzing (p-value = 0.011).

Next, we further evaluate how the type accuracy affects the
fuzzing capability. To this end, we deliberately introduce errors
to the type information obtained from §VII-B, and measure
the number of unique crashes found. Specifically, we emulate
both unsoundness and imprecision of our type analysis as
follows. To emulate the unsoundness, we randomly select
syscall arguments and replace their types with integer types.
To emulate the imprecision, we randomly select pointer type
arguments, and inflate their contents twice. For example, when
the pointee type is a structure, we replicate its fields to double
the structure size.

Figure 13 presents the average number of unique crashes
found with different error introduction ratios. We ran fuzzing
for 48 hours per each seed application per each configuration,
and repeated the experiments for five times. When we make
type information unsound, the fuzzer will lose chances to
mutate the contents pointed to by the arguments. On the other
hand, if we make the types imprecise, the fuzzer will waste its
resource in mutating irrelevant data, and even make the seed
application to abort due to corrupted parameters. Figure 13
confirms that fuzzing effectiveness indeed decreases as we
introduce more errors to the syscall types.

E. Real-World Bug Finding

We now discuss the practical impact of NTFUZZ by eval-
uating it on the latest Windows 10 (see §VII-A). For this
experiment, we reran the static analyzer on the new version
of the system binaries to obtain the syscall types. We also
manually analyzed and triaged all the bugs found.

1) Comparison Against Other Fuzzers: First, we compared
the effectiveness of NTFUZZ against existing Windows kernel
fuzzers. Note, while there are several open-source projects,



TABLE III
LIST OF UNIQUE BUGS NTFUZZ FOUND FROM THE LATEST WINDOWS 10.

No. Module Description Security Impact Status CVE

1 win32kfull.sys Arbitrary memory access due to sanitization error Privilege escalation Fixed CVE-2020-0792
2 ntoskrnl.exe Use of uninitialized heap memory in kernel-space Privilege escalation Fixed CVE-2020-1246
3 dxgkrnl.sys Indirect call to arbitrary address due to memory corruption Privilege escalation Fixed CVE-2020-1053
4 win32kfull.sys Out-of-bound buffer read in kernel-space memory Information disclosure Fixed CVE-2020-17004
5 ntoskrnl.exe Invalid kernel-space memory access due to sanitization error Denial-of-service Confirmed
6 win32kfull.sys Invalid user-space memory access due to sanitization error Denial-of-service Confirmed
7 ntoskrnl.exe Termination of critical system process Denial-of-service Confirmed
8 tcpip.sys NULL pointer dereference Denial-of-service Confirmed
9 -* NULL pointer dereference Denial-of-service Unknown
10 -* Floating point error Denial-of-service Unknown
11 -* Floating point error Denial-of-service Unknown
* Redacted for reponsible disclosure.

ioctlfuzzer

NtCall64

NTFUZZ

0 2 4 6 8

Fig. 14. Comparison of the bugs found by NTFUZZ, ioctlfuzzer, and NtCall64.

most of them were not usable. For example, kAFL [84]
and pe-afl [47] require users to manually write harness code
for fuzzing. Similarly, KernelFuzzer [25] requires users to
manually encode generation rules. BrokenType [37] targets
font parsing APIs, but these APIs do not execute kernel code
since 2015 [53].

Syzkaller [91] has limited Windows support because the
current implementation can only fuzz API functions but
not syscall functions. This makes the comparison against
Syzkaller pointless because syscall-level fuzzing is largely
different from API-level fuzzing as noted in §III.

This leaves us two Windows kernel fuzzers at hand: ioctl-
fuzzer [74] and NtCall64 [33]. To run the fuzzers on x86
Windows 10, we had to modify their source code: 34 lines
of code of ioctlfuzzer as it does not support Windows 10, and
165 lines of code of NtCall64 as it does not support x86.

We ran NTFUZZ for 48 hours per each seed application.
For ioctlfuzzer, which is a hooking-based fuzzer, we used the
same seed applications and fuzzing hours. For NtCall64, which
is a generation-based fuzzer, we simply ran it for the same
amount of time (48× 8 hours) without the seed applications.
The experiments were repeated five times.

Figure 14 presents the number of unique bugs found by
each fuzzer. On average, NTFUZZ found 7.8 (σ = 0.8) unique
bugs, while NtCall64 and ioctlfuzzer respectively found only
3.2 (σ = 0.4) and 0.6 (σ = 0.5) unique bugs. With Mann-
Whitney U tests, we confirmed that the differences between
NTFUZZ and the other fuzzers are significant (p-value = 0.009
for NtCall64 and p-value = 0.010 for ioctlfuzzer). The result
makes sense as ioctlfuzzer only focuses on IOCTL syscall,

1 NtTraceEvent(struct S* arg) {
2 ...
3 size_t n = arg->field_0x1c;
4 char* p = arg->field_0x20;
5 if (n && (p + n > 0x7fff0000 || p + n > p)) {
6 return;
7 }
8 if (p + 4 < p + n) {
9 if (*p) { ... } // Crashes here.

10 }
11 ...

Fig. 15. Pseudo-code of one of the bugs found by NTFUZZ.

and NtCall64 is type-unaware. This highlights the importance
of type-aware fuzzing on general syscall interfaces.

2) Found Bugs: Next, we collected all the unique bugs
found by NTFUZZ during the fuzzing experiment in §VII-E1.
Table III presents the 11 new bugs found by NTFUZZ, along
with short descriptions and relevant module names. To under-
stand the security impact of each bug we found, we manually
analyzed them and noted them in the table. All the bugs in
the table at least had the impact of denial-of-service, which
allows an unprivileged user to shut down the Windows system.
Moreover, four of the bugs had a more severe security impact
than denial-of-service. We note that ioctlfuzzer and NtCall64
only found denial-of-service bugs in the meantime. At the time
of writing, four of the bugs found by NTFUZZ were assigned
CVEs, and we won $25,000 bug bounty from Microsoft. This
result indeed highlights the practical impact of NTFUZZ.

3) Case Study: We present a case study on one of the
bugs we found to show how the design of NTFUZZ helped in
finding a new bug. In Figure 15, we provide the pseudo-code
of the syscall handler related to the fifth entry of Table III.
We simplified the code for ease of explanation.

This bug is caused by an error in the pointer sanitization
logic. First, an attacker provides a pointer to a C structure
as an argument to the syscall. This structure carries a buffer
pointer (field_0x20) as well as the size of the buffer
(field_0x1c). The kernel code sanitizes these two fields
at Line 5, to ensure that p does not point to a kernel-space
address. However, one can bypass this check when n is zero.



Therefore, if we provide n = 0 and p = UINT_MAX as
input, the kernel will crash at Line 9, while accessing an
invalid pointer value UINT_MAX.

Thanks to the syscall type information inferred by the
static analyzer, NTFUZZ knows that arg is a pointer to a
structure of 0x28-byte size, which allows it to perform type-
aware mutations on each field of the structure. Therefore,
NTFUZZ was able to trigger this bug while mutating the fields
of the structure, particularly at the offset 0x1c and 0x20
with extreme values (see §VI-B1). Note, without such type
information, NTFUZZ would suffer to trigger this bug.

VIII. DISCUSSION

Scope of Static Analysis. Our static analysis infers syscall
types by analyzing carefully chosen system binaries listed in
§II-A. Although those binaries cover a significant portion of
syscalls, we can potentially extend the number of target system
binaries to analyze more syscalls. An alternative solution is to
analyze the kernel code to figure out syscall types, which is
beyond the scope of this paper.

Generation-based and Coverage-based Fuzzing. While
hooking-based fuzzing has its advantage, generation-based
fuzzing can greatly reduce the dependency on seed applica-
tions. Since generation-based fuzzing can also benefit from
syscall type information, one may adopt our analyzer to a
generation-based fuzzer. Another promising direction is to
leverage code coverage feedback to effectively evolve test
cases, as in [11], [17], [52], [76], [84], [91], [95].

Union Type Handling. Windows syscalls can accept a
union type argument, which can be interpreted as different
types according to the context (e.g. IOCTL). We leave it as
future work to extend our system to support union types.
Currently, NTFUZZ can support a certain degree of flexibility
by handling such types as an array whose size is specified by
a different argument (see §V-C).

IX. RELATED WORK

Since the early black-box fuzzing work [35], [43], [44], ker-
nel fuzzing has lately evolved to various extents. Many kernel
fuzzers adopt grey-box fuzzing with coverage feedback [47],
[51], [70], [84], [91], [97], or utilize knowledge about the
syscall dependencies [25], [30], [91].

Static analysis has been another popular technique for
finding kernel bugs. Dr.Checker [50] aimed at making an
effective trade-off between soundness and precision to develop
a practical bug finder. K-Miner [27] proposed a method to
partition kernel code into relevant segments to enhance its
analysis capabilities. Other tools [93], [94] aim at finding a
specific class of bug. All of them attempt to analyze kernel
source code to find bugs, while our goal is on improving
fuzzing effectiveness with analyzed type information.

There is another line of work [4], [12], [29], which leverages
static analysis to enhance software testing. SymDrive [81]
relies on static analysis to decide efficient path scheduling
for symbolic execution. DEADLINE [98] statically analyzes
the memory access of kernel code to collect candidates for

double-fetch bug, and then checks these points with symbolic
execution. Razzer [34] uses static analysis to spot potential
data race points, and then runs hypervisor-assisted fuzzing on
these points. Moonshine [76] syntactically analyzes memory
access of kernel code and find implicit dependencies between
syscalls. This information is used to minimize the sequence of
seed syscalls. DIFUZE [18] leverages static analysis to infer
the type of syscall interface. While DIFUZE analyzes kernel
code to infer the types of IOCTL handlers, we analyze user-
space code and infer the types of all the observable syscalls.
All the above fuzzers report successful integration of static
analysis with kernel testing, but none of them runs on binary
code. To the best of our knowledge, our work is the first to
use static binary analysis to enhance COTS OS fuzzing.

There has been plenty of research on binary-level type
inference [14], but only a few of them consider memory
access [68]. DIVINE [7] and TIE [45] utilize VSA for type
inference, but their scalability to large binaries have not been
confirmed. Notably, SecondWrite [24] achieves scalability by
choosing a flow- and context-insensitive analysis. In contrast,
we do not sacrifice the sensitivities to obtain more precise
syscall types. Meanwhile, types in binary code can be also
inferred with dynamic analysis [49], [87], which is comple-
mentary to our work. While dynamic analysis does not suffer
from over-approximation as it traces a single execution path,
static analysis can benefit from observing the code that is
not executed in the runtime. For example, we can aggregate
type information from the call sites not executed by the seed
application (§V-C3), or analyze the data access pattern of the
whole function to infer stack structure (§V-C1).

X. CONCLUSION

In this paper, we presented NTFUZZ, a type-aware Windows
kernel fuzzer. Figuring out syscall types is challenging for
Windows due to its closed nature and large syscall interface.
Therefore, NTFUZZ analyzes Windows system binaries to
fathom what type of arguments are used to invoke syscalls. To
the best of our knowledge, NTFUZZ is the first system-wide
binary analyzer for Windows, which is both inter-procedural
and context-sensitive. We evaluated NTFUZZ on the latest
Windows kernel and found 11 unique kernel bugs, including
four CVEs. Our effort has been well appreciated by the
industry: currently, we have earned $25,000 of bug bounty.
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APPENDIX A
JOIN OPERATION FOR ABSTRACT DOMAIN

This section describes the join operation of our abstract
domain presented in Figure 6.

First, we define the join operation for the abstract integer
domain (I) as follows. Join operation with ⊥ or > is trivial. For
non-symbolic integers, join is performed as in the flat integer
domain. For symbolic integers, the two integers should exactly
match each other in order to spawn a non-> integer.

i t ⊥ = i,⊥ t i = i

i t > = >,> t i = >

(a1s1 + b1) t (a2s2 + b2) =


b1 (a1 = a2 = 0, b1 = b2)

a1s1 + b1 (a1 = a2, s1 = s2, b1 = b2)

> (otherwise)

Now we define the join of abstract values (V), abstract
memories (M), and abstract states (S). We use the standard
join operations [67], [82] for product domain (V, S), power
set domain (2L, 2T), and map domain (M). Since the register
map domain (R) has the same join operation with abstract
memory domain, it is omitted below.

v1 t v2 = 〈v1[0] t v2[0], v1[1] ∪ v2[1], v1[2] ∪ v2[2]〉
m1 tm2 = ⊥m[k1 7→ m1(k1) tm2(k1)]...[kn 7→ m1(kn) tm2(kn)]

where ki is contained in m1 or m2

s1 t s2 = 〈s1[0] t s2[0], s1[1] t s2[1]〉

APPENDIX B
DETAILS OF ABSTRACT SEMANTICS

A. Binary Operation
In this section, we present the formal definition of binary

operation semantics (binop) we described in §V-B2. For
simplicity, we present the semantics of the two representative
binary operations, addition and multiplication. We note that
the semantics of subtraction is defined similarly to addition,
and other operations like logical AND are defined similarly to
multiplication.

First, we define binary operations for abstract integers. If
the result cannot be represented in a linear expression of a
single symbol, we conservatively return >.

i +̂ ⊥ = ⊥,⊥ +̂ i = ⊥
i +̂ > = >,> +̂ i = >

(a1s1 + b1) +̂ (a2s2 + b2) =



(b1 + b2) (a1 = a2 = 0)

a1s1 + (b1 + b2) (a2 = 0)

a2s2 + (b1 + b2) (a1 = 0)

(a1 + a2)s1 + (b1 + b2) (s1 = s2)

> (otherwise)

i ×̂ ⊥ = ⊥,⊥ ×̂ i = ⊥
i ×̂ > = >,> ×̂ i = >

(a1s1 + b1) ×̂ (a2s2 + b2) =


b1b2 (a1 = a2 = 0)

(a1b2)s1 + b1b2 (a2 = 0)

(a2b1)s2 + b1b2 (a1 = 0)

> (otherwise)

Next, we define an operation to add an offset to an abstract
location. We use the same notation +̂ again here, as we can
decide which definition to use by looking at the operand types.

Global(n1) +̂ n2 = Global(n1 + n2)

Stack(f, n1) +̂ n2 = Stack(f, n1 + n2)

Heap(a, n1) +̂ n2 = Heap(a, n1 + n2)

SymLoc(s, n1) +̂ n2 = SymLoc(s, n1 + n2)

Finally, we define the binary operation semantics (binop)
as follows. As we described in §V-B2, we trace only the
constant offsets and ignore array index terms. This is achieved
by considering only the syntactic constants during the addition
to abstract locations. Also, note that multiplication results in
an empty location set, and generates an integer type constraint.
In the actual implementation, we also consider the width of
the integer types, which is not shown here for the conciseness.

binop(+, e1, e2, S) = add(e1, e2, S)

binop(×, e1, e2, S) = mul(e1, e2, S)

...

add(e, n, S) = 〈v[0] +̂ n, {l +̂ n|l ∈ v[1]}, φ〉
where v = V(e)(S)

add(n, e, S) = add(e, n, s)

add(e1, e2, S) = 〈v1[0] +̂ v2[0], v1[1] ∪ v2[1], φ〉
where vi = V(ei)(S)

mul(e1, e2, S) = 〈v1[0] ×̂ v2[0], φ, {integer}〉
where vi = V(ei)(S)

B. Side Effect Application

In this section, we present the formal definition of apply
function described in §V-B2.

First, we define a side effect as a pair of an argument
map and an update set. The argument map is a mapping
from an argument index to its corresponding symbolic value.
Meanwhile, the update set captures the pairs of an updated
location and its updated value. Recall from §V-B4 that NSE

limits the size of this set for scalability.

(Argument Map) A = Z→ V
(Update Set) U = 2L×V

(Side Effect) ∆ = A× U

For instance, let us assume that function f updates its first
argument location with zero (i.e. “*arg1 = 0”). Then, the
argument map of f will record that its first argument was
initialized as 〈s1, {SymLoc(s2, 0)}, {SymTyp(s3)}〉, and its
update set will be expressed as {〈SymLoc(s2, 0), 〈0, φ, φ〉〉}.

To apply side effect δ = 〈A,U〉 to state S, we should
first construct a substitution Γ, by matching each A(i) with
getArg(S, i), where i is an argument index contained in A.



Here, function getArg obtains the (i + 1)-th argument value
from the state S, according to the ABI specification.

Let us resume the previous example, and assume that a
new function g calls f with 〈⊥, {Stack(g,−40)}, φ〉 as the
first argument. That is, g passes its local variable address
as an argument to f. Then, the substitution Γ is constructed
by matching 〈s1, {SymLoc(s2, 0)}, {SymTyp(s3)} with this
value. As a result, Γ will contain a mapping that substitutes
symbolic location SymLoc(s2, 0) into Stack(g,−40).

With the constructed substitution Γ, we can finally define
apply as follows. We first substitute the update entries in U
and accumulate these instantiated updates to the memory.

apply(δ, S)=〈R, update(Γ(ln))(Γ(vn))(...update(Γ(l1))(Γ(v1))(M)...)〉
where δ = 〈A,U〉, S = 〈R,M〉, 〈li, vi〉 ∈ U

In the actual implementation, a side effect includes addi-
tional information like the return value of a function, which
is omitted here. It is straightforward to extend the definition
of a side effect in such a way.

C. IR-level Example

Now we illustrate how the abstract semantics is actually
applied on an IR-level example in Figure 16. This code snippet
corresponds to Line 4 of our high-level example in Figure 4.
The function call h(p,x) in C code is translated into the IR
statements in Figure 16. We first prepare argument x (Line 1-
3) and argument p (Line 4-5), and then call h (Line 6).

We will assume that esp is initialized to have a location
Stack(f,−20) at Line 1. Meanwhile, ebp will contain
the initial value of esp at the function prologue2, namely
Stack(f,−4). Also, let us assume that the heap location
Heap(a, 0) returned from malloc is contained in esi, where
a is the allocation site.

For the Put statement in Line 1, we first evaluate the
memory load expression, [ebp+8]. According to the binary
operation semantics in Appendix B-A, we add 8 to the offset
of the abstract location in ebp, obtaining Stack(f, 4) as a
singleton location to load from. Since this location corresponds
to the argument of f, load from this location returns a symbolic
value, such as 〈s1, {SymLoc(s2, 0)}, {SymTyp(s3)}〉. For
conciseness, let us name this value as vx. Based on the
semantics of Put in Figure 7b, this value is assigned to ebx.

In Line 2, we first apply update in Figure 7b, using location
Stack(f,−20) and the symbolic value in ebx. Then, we
assign Stack(f,−24) to esp in Line 3. Next, in Line 4, we
update location Stack(f,−24) with the value of esi, which
is 〈⊥, {Heap(a, 0)}, φ〉. Lastly, we assign Stack(f,−28) to
esp at Line 5.

At Line 6, we finally call a summarized function, h. Recall
from §IV-C that the side effect of h(a, b) was summarized
as “*a = b”. As we explained in Appendix B-B, this can
be represented as an update set U = {〈SymLoc(α2, 0), vb〉},
where an argument map A records that a is initialized as

2Precisely speaking, after the first instruction (push ebp) of the prologue.

1 Put(ebx, [ebp+8])
2 Store(esp, ebx)
3 Put(esp, esp-4)
4 Store(esp, esi) # esi: return of malloc()
5 Put(esp, esp-4)
6 Call(g)

Fig. 16. IR-level example code.

va = 〈α1, {SymLoc(α2, 0)}, {SymTyp(α3)}〉, whereas b is
initialized as vb = 〈β1, {SymLoc(β2, 0)}, {SymTyp(β3)}〉.

To apply this side effect, we first have to construct a substi-
tution Γ. As we described in Appendix B-B, we match va with
the argument 〈⊥, {Heap(a, 0)}, φ〉, and vb with the argument
vx. Consequently, we obtain Γ that substitutes SymLoc(α2, 0)
with {Heap(a, 0)} and vb with vx. By applying the substituted
update entries, Line 6 will update location Heap(a, 0) with vx,
which is 〈s1, {SymLoc(s2, 0)}, {SymTyp(s3)}〉.

APPENDIX C
VSA AND OUR MODULAR ANALYSIS

Since our analysis should initialize function arguments with
symbolic values, the abstract domain has to deal with symbolic
locations. In VSA, such a symbolic location has the form of
SymLoc(s, [α, β]), where s is a symbolic pointer, and [α, β]
is a symbolic offset.

Suppose we perform a memory update on the above sym-
bolic location. The first plausible strategy is to soundly coa-
lesce all possible locations into one. This means we consider
the symbolic pointer as an access to SymLoc(s, ∗), where ∗
means any offsets. All the updates with this symbolic pointer
will then be accumulated to a single location, but this will
make the analysis too imprecise.

Another strategy is to unsoundly ignore the update when
the offset has symbolic boundaries. While this strategy can
mitigate the imprecision problem, it can lose interesting data
flows. For example, any memory accesses using a pointer
argument will be ignored in the analysis as an argument is
always initialized to have symbolic boundaries.

The last alternative is to split the abstract memory based on
the given symbolic boundaries. That is, we subdivide the mem-
ory into three: SymLoc(s, [−∞, α]), SymLoc(s, [α, β]),
and SymLoc(s, [β,∞]). However, when there is a subsequent
update with another location SymLoc(s, [γ, δ]), we must
consider the overlap between the two symbolic offsets [α, β]
and [γ, δ]. Thus, the memory state has to grow exponentially
to the number of memory updates.

For these reasons, it is not straightforward to integrate
modular analysis with the VSA domain. While this is an
interesting challenge, we leave it as future work. Instead, we
enable modular analysis for binary code by designing a novel
abstract domain that we describe in §V-B1.
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