
RETracer: Triaging Crashes by Reverse Execution from
Partial Memory Dumps

Weidong Cui
Microsoft Research

wdcui@microsoft.com

Marcus Peinado
Microsoft Research

marcuspe@microsoft.com

Sang Kil Cha
KAIST

sangkilc@kaist.ac.kr
Yanick Fratantonio

UC Santa Barbara
yanick@cs.ucsb.edu

Vasileios P. Kemerlis
Brown University

vpk@cs.brown.edu

ABSTRACT
Many software providers operate crash reporting services to auto-
matically collect crashes from millions of customers and file bug
reports. Precisely triaging crashes is necessary and important for
software providers because the millions of crashes that may be re-
ported every day are critical in identifying high impact bugs. How-
ever, the triaging accuracy of existing systems is limited, as they
rely only on the syntactic information of the stack trace at the mo-
ment of a crash without analyzing program semantics.

In this paper, we present RETracer, the first system to triage
software crashes based on program semantics reconstructed from
memory dumps. RETracer was designed to meet the requirements
of large-scale crash reporting services. RETracer performs binary-
level backward taint analysis without a recorded execution trace to
understand how functions on the stack contribute to the crash. The
main challenge is that the machine state at an earlier time cannot
be recovered completely from a memory dump, since most instruc-
tions are information destroying.

We have implemented RETracer for x86 and x86-64 native code,
and compared it with the existing crash triaging tool used by Mi-
crosoft. We found that RETracer eliminates two thirds of triage
errors based on a manual analysis of 140 bugs fixed in Microsoft
Windows and Office. RETracer has been deployed as the main
crash triaging system on Microsoft’s crash reporting service.

CCS Concepts
•Software and its engineering → Software testing and debug-
ging;

Keywords
triaging; backward taint analysis; reverse execution

1. INTRODUCTION
Many software providers, including Adobe [2], Apple [6], Goo-

gle [16], Microsoft [15], Mozilla [28] and Ubuntu [41], operate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884844

crash reporting services that automatically collect crashes from mil-
lions of customers and file bug reports based on them. Such ser-
vices are critical for software providers because they allow them
to quickly identify bugs with high customer impact, to file bugs
against the right software developers, and to validate their fixes.
Recently, Apple added crash reporting for apps in the iOS and Mac
App Stores to help app developers pinpoint top issues experienced
by their users [5]. Crash reporting is not only being relied upon
by traditional desktop platforms, but also by more recent mobile
platforms.

One of the most critical tasks in a crash reporting service is triag-
ing software crashes, i.e., grouping crashes that were likely caused
by the same bug. Large services may receive millions of crash re-
ports every day. It is not possible to have developers inspect more
than a small fraction of them. Good triaging can cluster together
a potentially large number of crash reports belonging to the same
software bug and thus reduce the number of crash reports that have
to be inspected. It can also help prioritize the most critical bugs by
user impact (i.e., those bugs for which the largest numbers of crash
reports arrive) and file them against the right software developers.

Precise crash triaging is a hard problem. A single bug may man-
ifest itself in a variety of ways and give rise to large numbers of
dissimilar-looking crash reports. This difficulty is exacerbated by
the limited information contained in a crash report. A typical report
(or core dump or memory dump [45]) contains at most the con-
text of the crash thread (stack and processor registers) and a subset
of the machine’s memory contents at the moment of the crash. A
variety of constraints ranging from minimizing overhead on cus-
tomer machines to protecting customer privacy prevent software
providers from including richer information in their reports. In par-
ticular, there is no information about the program execution leading
up to the crash. The sheer volume faced by large-scale crash report-
ing services adds a further problem because there is usually a time
budget for analyzing a crash.

Given these challenges, crash reporting services have been lim-
ited to triaging crashes by using stack traces in a “syntactic” way.
Ubuntu [40] groups crashes by using a crash signature computed
based on the top five functions on the stack of the crash thread (we
will refer to it as “the stack” in the rest of this paper unless speci-
fied otherwise). Microsoft’s Windows Error Reporting (WER) ser-
vice [15] uses a tool called !analyze (bang analyze [23]) to group
crashes based on a blamed function identified on the stack. !analyze
picks the top function as the blamed function by default, but uses a
large whitelist of functions and modules and additional heuristics to
pick a different function down the stack. Such triaging approaches
do not consider the “semantics” of functions, that is, how they con-
tribute to the crash. This significantly limits their triaging accuracy

and the overall effectiveness of crash reporting services.
In this paper, we present RETracer, the first system to triage

software crashes based on program semantics reconstructed from
a memory dump. RETracer was designed to meet the requirements
of large-scale crash reporting services. Conceptually, RETracer
mimics developers which usually debug crashes by reversely an-
alyzing the code and the stack to find out how a bad value such
as a corrupted pointer was passed. RETracer automates this de-
bugging process by realizing binary-level backward taint analysis
based only on memory dumps.

Backward taint analysis begins with tainted data items (e.g., a
corrupted pointer) at the end of an execution and analyzes instruc-
tions reversely to propagate taint backwards and determine where
the tainted data originated at an earlier time. It is straightforward to
perform this analysis on a recorded execution trace [14, 8, 9]. How-
ever, recording execution traces is not an option for crash triaging
services because it imposes significant tracing overhead during nor-
mal execution [8].

Backward taint analysis without an execution trace is challeng-
ing. The machine state at an earlier time cannot be recovered com-
pletely since most instructions are information destroying. For ex-
ample, after executing XOR EAX, EAX, the original value of register
EAX is lost. With an incomplete machine state, backward taint prop-
agation may have to stop prematurely when the address of a tainted
memory location cannot be recovered.

RETracer is the first system to successfully perform binary-level
backward taint analysis without an execution trace for crash triag-
ing. To recover memory addresses, it combines concrete reverse
execution and static forward analysis to track register values.

Given a backward data flow graph inferred from the backward
taint analysis, it is not obvious how to find the blamed function.
We design an intuitive algorithm to solve this problem. RETracer
blames the function where the bad memory address was derived for
the first time. The intuition behind it is that the function that was
the first one to obtain a bad value should be the one to ensure the
value’s correctness.

We have developed RETracer into a working system for triaging
crashes of x86 and x86-64 native code, and compared it with !an-
alyze, the existing crash triaging tool used by WER. We manually
analyzed crashes of 140 bugs fixed in Microsoft Windows 8 and
Office 2013. RETracer correctly identified the blamed function for
all but 22 bugs, while !analyze failed for 73 bugs. RETracer thus
reduces the number of triage errors by two thirds. We evaluated
RETracer on 3,000 randomly selected crashes and found that its
median, average, and maximum run time is 1.1, 5.8, and 44.8 sec-
onds. RETracer has been deployed as the main crash triaging sys-
tem on WER. A study of the deployment data shows that RETracer
is being used to analyze about half of the reported x86 and x86-64
crashes in Microsoft’s software.

In summary, we make the following contributions:

• We have designed a new approach to triaging crashes that
performs backward taint analysis without requiring execu-
tion traces and identifies blamed functions based on back-
ward data flow graphs (Section 3).

• We have implemented RETracer for triaging crashes of x86
and x86-64 native code (Section 4).

• We have compared RETracer with !analyze, the existing crash
triaging tool used by WER, on 140 fixed bugs and studied
RETracer’s deployment on WER. (Section 5).

2. OVERVIEW
In this section, we present an overview of RETracer’s design and

discuss its design choices.
RETracer can analyze all crashes caused by access violations,

except for those due to stack overflows (i.e., out of stack space),
unloaded modules and bit flips [29]. These three exceptions are not
a serious limitation because there are effective solutions for each of
them. For stack overflows, a straightforward solution is to blame
the function that takes up the most stack space. For unloaded mod-
ules, a straightforward solution is to blame the function that calls
the unloaded module. A solution for detecting bit flips was pro-
posed in [29]. Crashes that are being analyzed by RETracer make
up about half of the x86 and x86-64 crashes in Microsoft’s software
(see Section 5).

RETracer performs backward taint analysis to triage crashes. This
essentially mimics how developers analyze crashes. The first ques-
tion developers often ask is where the corrupted pointer came from.
To answer this question, they usually follow the code and the stack
backward to find out how the corrupted pointer was passed. The
backward taint analysis in RETracer automates this debugging pro-
cess.

Similar to existing triaging solutions [15, 40], RETracer focuses
on the stack of the crash thread: It will blame one of the func-
tions on the stack. A common question is what happens if a crash
involves multiple threads. The answer has two aspects. First, a
large fraction of bugs involves only the crash thread. For exam-
ple, an empirical study [36] on the ECLIPSE project showed that
more than 60% of bugs were fixed in a function on the crash stack.
Second, the triaging goal of RETracer is to group crashes caused
by the same bug together, which does not require finding the root
cause. For example, assume function A in thread 1 writes a bad
value to a pointer. Function B in thread 2 reads the bad pointer and
dereferences it, causing an access violation. In this case, the root
cause is function A. But if function B is the only one or one of a
few functions that use the bad pointer, then grouping crashes based
on function B meets the triaging goal.

Backward data flow analysis can, in principle, be performed on
source code (e.g., [22, 37]) or on binaries. Source code analysis has
a number of desirable properties, including being unencumbered by
the complications of processor instruction sets. However, our only
source of information about crashes are crash reports. The data
they contain (CPU register values, values stored at raw virtual ad-
dresses) can be consumed directly by binary-level analysis. While
one could consider translating this information into a form that is
amenable to source-level analysis, such translation would have to
overcome a variety of complications. Registers and memory loca-
tions in the crash report would have to be mapped to variables in the
source code. The challenge is that there is no debug information for
temporary variables. For example, given VarB = VarA->FieldB->FieldC,
there is no debug information indicating in which register or stack
location the value of VarA->FieldB is stored. Furthermore, compiler
optimizations may make the mapping from machine state to source
code even harder. Given these complications, we made the design
choice to perform our analysis at the binary level.

This choice has the additional benefit of making RETracer inde-
pendent of the original programming language. This allows us to
use a single analysis engine to analyze crashes of both native code
(e.g., compiled from C/C++) and jitted code (e.g., compiled from
C# or JavaScript). In this paper, we focus on analyzing crashes of
native code.

Taint analysis assigns meta-data (taint) to data items (registers or
memory locations). Given a sequence of instructions, and an initial
set of tainted data items, taint analysis will propagate any taint as-

1 f()
2 {
3 T p;
4 p.f = NULL; // RETracer blames this function!
5 g(&p);
6 }
7
8 g(T *q)
9 {

10 int *t = q->f;
11 h(t);
12 }
13
14 h(int *r)
15 {
16 *r = 0; // crash!!
17 }

Listing 1: This sample code demonstrates how RETracer makes use
of backward taint analysis to blame functions. The crash occurs
in function h (line 16). RETracer blames function f because it
originally sets the bad value to pointer r (line 4).

sociated with the source operands of an instruction to its destination
operand. Backward taint analysis begins with tainted data items at
the end of an execution and tries to determine where the tainted
data originated at an earlier time. It analyzes instructions reversely
to propagate the taint backward. This technique has been applied to
recorded execution traces [9], where the complete sequence of ex-
ecuted instructions and a large amount of state that can be derived
from it are available.

RETracer is the first system to perform binary-level backward
taint analysis without execution traces. The input to RETracer is
the memory dump of a crash, binaries of modules identified in the
memory dump, and their debug symbols. On Windows, a binary is
a PE file, and its debug symbols are stored in a corresponding PDB
file. RETracer does not require the memory dump to be complete.
Instead, it only requires the stack memory and the CPU context of
the crash thread at the moment of crash. Additional memory infor-
mation in the dump may improve its analysis but is not necessary.

RETracer begins with the corrupted pointer that caused the crash
and uses backward taint analysis to find the program location(s)
where the bad value originated. The limited amount of informa-
tion in a memory dump (when compared to an execution trace) is
a significant complication that RETracer must overcome. The re-
sult of the backward taint analysis is a backward data flow graph
that shows how the corrupted pointer was derived. RETracer ana-
lyzes the graph to identify the blamed function where the corrupted
pointer was derived for the first time.

RETracer’s backward taint analysis uses concrete addresses rather
than symbolic expressions to represent memory locations. The
main limitation of using concrete addresses is that taint cannot be
propagated if the address of a tainted memory location cannot be
recovered. The main limitation of using symbolic expressions is
that taint will be propagated too far if the alias set of the symbolic
expression of a tainted memory location is an over-approximation.
In RETracer we choose concrete addresses over symbolic expres-
sions because we would rather blame a function close to the crash
than a totally irrelevant function. To recover concrete addresses of
memory locations, RETracer combines concrete reverse execution
with forward static analysis to track values of registers and memory
locations.

A simple example is shown in Listing 1. In this case, the crash
occurs in function h at line 16. With its backward taint analysis,
RETracer can find out that the bad pointer r was originally set in

function f at line 4. Therefore, RETracer blames function f for
this crash.

3. DESIGN
In this section, we describe the design of RETracer in detail.

First, we will present the basic scheme of the backward taint anal-
ysis. Then we will describe how we use static forward analysis
to mitigate the problem of missing register values caused by ir-
reversible instructions. Finally, we will present the algorithm for
identifying blamed functions from backward data flow graphs.

RETracer’s analysis is performed at the binary level. We de-
scribe the design in terms of a very simple assembly language. This
allows us to describe RETracer without being encumbered by the
idiosyncrasies of any concrete processor. Section 4 will describe
how we implemented RETracer for x86-64 processors.

A program in our language is a sequence of instructions of the
form opcode dest,src, where opcode specifies the instruc-
tion type (e.g., mov or xor), and src and dest are the source
and destination operands. An operand is an immediate (a constant),
a processor register (numbered R0, R1, . . .), or a memory address
specified as [Rb+c·Ri+d], where c ∈ {0, 1, 2, 4, 8} is a constant,
d is a constant displacement, Rb and Ri are arbitrary registers. We
refer to Rb as the base register and to Ri as the index register.

3.1 Backward Taint Analysis
For taint analysis, we need to answer two questions: how to in-

troduce taint and how to propagate taint. We maintain taint infor-
mation on both registers and concrete memory locations. For mem-
ory locations, we keep the taint at byte granularity. For registers,
we keep the taint at register granularity.

Next we first describe taint introduction, taint propagation, and
concrete reverse execution. We then explain how the backward
analysis is performed inside a function and across functions.

3.1.1 Taint Introduction
The crash report logs both the crash instruction and the access

violation type (i.e., read, write, or execution). For write violations,
we examine the destination operand of the crash instruction. If it
is a memory operand, we taint its base and index registers because
the base register may contain a corrupted pointer value, and the
index register may contain a corrupted array index. For read viola-
tions, we proceed similarly for the source operand. For execution
violations, we check the caller to see if it was caused by calling a
function pointer. If so, we taint the base and index registers of the
memory operand for the function pointer.

3.1.2 Taint Propagation
Starting at the instruction that triggered the crash, we move back-

ward, instruction by instruction. Section 3.1.5 will explain how we
incorporate the program’s control flow into this analysis. For each
instruction, we propagate taint depending on the semantics of the
instruction. By default, we first check if the destination operand
is tainted. If so, we first untaint the destination operand and then
taint the source operand. For example, the MOV instruction copies
the value of its source operand to its destination operand and can
be handled by the default rule. Section 4 contains examples of x86
instructions that require more complex tainting rules.

When propagating taint to registers, we do not require knowing
their values. When propagating taint to memory locations, we must
know their addresses. Even when the memory address is unknown,
we always propagate taint to the base and index registers of the
memory operand if they exist. By tainting these registers, we can
track how the pointer to a corrupted value was derived recursively

and construct a backward data flow graph of multiple dereference
levels. In Section 3.2, we describe how we use such a backward
data flow graph to identify a function to blame for the crash.

3.1.3 Concrete Reverse Execution
To compute the address of a memory location, we need to know

the values of the base and index registers of the memory operand.
In RETracer, we perform concrete reverse execution to track val-
ues of registers and memory locations. Similar to taint tracking, we
keep values at register granularity for registers and at byte granu-
larity for memory locations.

We can think of an instruction as a function f such that dst =
f(src) (e.g., MOV dst, src) or such that dst = f(src, dst) (e.g.,
ADD dst, src). In the former case, the concrete reverse execution of
the instructions attempts to compute the value of src = f−1(dst).
This succeeds if we know the value of dst and if f is reversible
(i.e., if f−1(dst) is a single value). In the latter case, we attempt to
determine the value of dst before the instruction. This is possible
if we know the values of src and of dst after the instruction and if
f is reversible. In either case, if we can obtain the value, we update
the register or memory location associated with the operand and
proceed backwards to the next instruction.

The problem is complicated by the fact that many instructions
are irreversible. Examples include XOR R0, R0 and MOV R0, [R0].
In these cases, we set the register or memory location’s value to be
unknown. In cases like MOV R0, [R0], we also cannot propagate taint
to the memory location [R0] because the value of R0 is unknown.

It is worth noting that instructions on stack and frame point-
ers [43] are mostly reversible. This allows RETracer to track taint
on stack memory locations almost completely. On the other hand,
the problem of missing register values significantly affects taint
propagation to memory locations not controlled by stack or frame
pointers. The next subsection describes how we use static forward
analysis to mitigate this problem.

3.1.4 Static Forward Analysis
The key idea of our static forward analysis is to perform a binary

analysis of individual functions to identify how register values are
derived.

MOV R0, R1

MOV R0, [R0]
In the above two-instruction example, our forward analysis will
find that, after executing the first instruction, we establish the value
relation that R0 has the same value as R1. When we perform back-
ward analysis on the second instruction, we can use this value rela-
tion to compute R0’s original value (assuming R1’s value is known)
and propagating taint to [R0]. This lookup is done recursively. For
example, if we do not know R1’s value, we will check if it can be
computed from another register or memory location.

This is similar to traditional use-def analysis. But there is an
important difference. Our goal is to find value relations that depend
on the current register values.

MOV R0, R1

MOV R1, R2

MOV R0, [R0]
In the above three-instruction example, after executing the second
instruction, we will invalidate all the value relations based on R1

because its value is changed. We then add a new value relation for
R1 and R2. Thus, we will not use R1 to recover R0’s value at
the third instruction. In contrast, traditional use-def analysis would
maintain that R0 was defined by R1 (in the first instruction).

Our static forward analysis is conservative in the sense that we
invalidate value relations with all memory locations if the desti-

nation of a memory write cannot be decided. To decide the des-
tination of a memory write to the stack, we track how the stack
pointer is updated. Specifically, we use two symbolic expressions
to represent the values of registers pointing to the stack. The first
symbolic expression is stack0 which represents the stack pointer’s
value at the entry of a function. The second symbolic expression is
stack1 which represents the stack pointer’s value after stack align-
ment (e.g., to 8 bytes). We need the second symbolic expression
because the effect of a stack alignment instruction cannot be deter-
mined statically. In our static forward analysis, the stack pointer
and other registers derived from it are all represented by stack0 or
stack1 plus an offset.

Another advantage of tracking registers based on stack0 and stack1
is that we can directly tell if a register in a memory operand points
to the stack. If so, we do not propagate taint to this register (since
RETracer does not triage stack overflows). Without this, incorrect
taint could eventually propagate to the stack pointer. While this
problem could be fixed, it would complicate our backward taint
analysis.

3.1.5 Intra-Procedural Analysis
We have presented the basic ideas of backward taint analysis and

static forward analysis. Next we describe how they are being done
within a function. Given a function, we first divide it into basic
blocks and construct a control flow graph.

Static forward analysis is done only once, before we perform
backward taint analysis on a function. Our goal is to compute the
value relations for all registers before each instruction. For each
block, we first initialize the value relations by merging them from
all its preceding blocks in the control flow graph. Then we ana-
lyze each instruction in the basic block to update the value relations
as described in Section 3.1.4. We repeat this process by iterating
through all blocks until the value relations converge. When we
merge value relations from multiple blocks, we mark a register’s
value to be invalid if its value relations have a conflict. This en-
sures that the static forward analysis will converge.

In the concrete reverse execution, we maintain the current values
of registers and memory locations for every instruction. We start
from the crash instruction in its function. We use the crash report
to obtain initial values of registers and memory locations. Then, we
execute backward from the crash instruction in its block. For each
instruction, we update the concrete values of registers and memory
locations as described in Section 3.1.3. We also leverage the value
relations inferred from the static forward analysis to recover regis-
ter values if necessary. For each block, we first merge the values
and taint from all its succeeding blocks in the control flow graph. If
the concrete values of a register or memory location do not agree,
we set its value to unknown. We repeat this process by iterating
through all blocks that are backward reachable from the crash in-
struction until the values converge.

If the block of the crash instruction is in a loop, the analysis
above will merge values from multiple iterations. This may over-
write the original values that led to the crash. To better capture
these important values, we create a new block that contains the
instructions up to the crash instruction in its block. We reverse exe-
cute this new block and propagate the values to its preceding blocks
only once at the beginning.

In the backward taint analysis, we maintain the currently tainted
registers and memory locations. We start from the crash instruc-
tion in its function. As discussed in Section 3.1.1, we set the initial
taint on the base and index registers of one of the operands of the
crash instruction. Then, we execute backward from the crash in-
struction in its block. For each instruction, we propagate the taint

as described in Section 3.1.2. For each block, we first merge the
taint from all its succeeding blocks in the control flow graph. Since
a register or memory location may be tainted at multiple places, we
keep its taint as a set of program locations where it was tainted.
When merging the taint of a register or memory location, we sim-
ply update this set. We repeat this process by iterating through all
blocks that are backward reachable from the crash instruction un-
til the taint converges. We also apply the same optimization to the
block of the crash instruction as in the concrete reverse execution
to capture the original taint propagation right before the crash.

After completing the analysis of the crash function, we use its
values and taint at the function entry as the initial values and taint
for its caller on the stack. Then we perform the backward taint
analysis on the caller function from the call instruction where the
caller calls the crash function. We apply the optimization described
previously to the block of the call instruction to better capture the
values and taint right before the function call. After we are done
with this function, we continue the analysis to its caller on the stack.

3.1.6 Inter-Procedural Analysis
We have just described how we perform backward taint analysis

and static forward analysis within a function. Next we present the
details on how we handle function calls in these two analyses.

Our static forward analysis is an intra-procedural analysis. We
do not analyze callee functions in this analysis. Instead, given a call
instruction, we invalidate value relations for volatile registers which
can be modified by the callee based on the calling convention [44]
as well as memory locations. We also update the stack pointer if the
callee is responsible for cleaning up the stack under the function’s
calling convention.

Our backward taint analysis is inter-procedural. In addition to
analyzing the functions along the stack, as described previously,
we apply backward taint analysis to functions called by them. Our
inter-procedural analysis is, by necessity, incomplete because we
may not be able to find the target functions for all indirect calls
during reverse execution. Furthermore, the key difference between
functions on the crash stack and those that are not is that the stacks
of the latter functions are unavailable since they were already popped.
Without the stack, it is difficult to recover lost register values when
they are “popped” off the stack at the end of typical functions. This
means that we have limited ability to track memory taint in func-
tions that are not on the crash stack.

For these two reasons, we perform the backward taint analysis
only for callee functions that either have a tainted return value or
change the stack pointer (e.g., exception handling code). Before
performing the backward taint analysis on a callee function, we run
our static forward analysis on it. We begin the analysis of callee
functions at their return instruction(s).

For call instructions whose targets we do not analyze (because
we could not find the target or because the target does not meet our
conditions), we check if its return value and parameters are tainted
based on the function’s definition. Since, in general, we have no
specification for how a function may change its parameters, our
parameter check is only an approximation. Specifically, we assume
a callee function may modify the target data structure pointed to by
a parameter and check if any memory covered by the data structure
is tainted. If the return value or a parameter is tainted, we untaint it
and mark that its value was set by the callee function.

3.2 Blamed Function Identification
In this section, we describe how we construct a backward data

flow graph based on our backward taint analysis and how we iden-
tify a blamed function based on this graph.

Figure 1: A sample backward data flow graph. Each node is a three
tuple consisting of the frame level, the instruction’s address, and
the tainted operand. Assignment edges are solid and dereference
edges are dotted. The graph is simplified to improve readability.

3.2.1 Backward Data Flow Graph
A node in our backward data flow graph is created when a reg-

ister or memory location is tainted. A node is also created when
the taint is stopped at a constant or a call to a callee function. To
differentiate instances of the same registers and memory locations
at different instructions or at different invocations of the same in-
struction, we define a node to be a three tuple consisting of the
frame level of the function on the stack, the instruction’s address,
and either a register or memory location or constant or a symbol
representing a call to a callee function. The crash function has the
frame level of zero because it is at the top of the stack. When going
down the stack, the frame level increases by one when moving by
one frame. For a callee function that is not on the stack, we use the
frame level of its caller function on the stack. A sample backward
data flow graph is shown in Figure 1.

Our backward data flow graph has two kinds of edges: assign-

ment and dereference. An assignment edge is added when we prop-
agate taint from a destination operand to a source operand. A deref-
erence edge is added when we propagate taint from a memory lo-
cation to its base and index registers (i.e., the base memory address
and the array index). Both assignment and dereference edges are
directed. For assignment edges, the direction is from the destina-
tion operand to the source operand. For dereference edges, the di-
rection is from the memory location to the base and index registers.

We add a special node (called the crash node) to the graph. We
also add dereference edges from the crash node to the base and/or
index registers which received the initial taint. We define the deref-
erence level of a node to be the minimum number of dereference
edges on any path from the crash node to this node. The crash
node’s dereference level is 0.

3.2.2 Blamed Function Identification
Our identification algorithm works in two steps. The first step is

to identify nodes that have bad values. The second step is to find a
blamed function that is the source of these bad values.

For the first step, we pick the nodes of the base and index regis-
ters at the crash site to be the nodes of bad values by default. These
are the nodes that are connected by dereference edges to the crash
node. There is a single bad-value node [0,gdi32+f78d,{REG:RCX}] in
Figure 1. We make two exceptions to this rule. One is related to
array operations. The other is related to whitelisted modules.

An array operation is usually realized by a compiler as [Rb +
c · Ri + d], and we look for operands of this type. If the crash
instruction does not have an index register and its base register (i.e.,
the corrupted pointer) was derived from an array operation, we pick
the nodes of the base and index registers of the array operation to
be the nodes of bad values. The intuition behind this exception is
that, if a corrupted pointer was obtained from an array access, a
problem in the array access (due to a bad array base or a bad array
index) is more likely than the array containing incorrect values.

We conditionally whitelist library modules such as ntdll.dll. On
one hand, a crash in such a module is usually caused by a bug in its
caller outside the module. On the other hand, simply ignoring func-
tions from a whitelisted module is problematic because it prevents
developers from detecting bugs in library modules. Such bugs often
have high impact due to the wide use of library modules. Missing
them may result in a large number of unresolved crashes.

We solve this dilemma with the help of the backward data flow
graph. If all the nodes in the graph are from functions of whitelisted
modules, the crash is likely due to a bug in a whitelisted module be-
cause the caller outside the whitelisted modules did not pass a pa-
rameter that is directly related to the crash. In this case, we handle
the whitelisted modules as regular modules. Otherwise, we pick the
nodes that are outside whitelisted modules and have the minimum
dereference level to be the nodes of bad values. They essentially
represent the tainted parameters passed to a whitelisted module.

In the second step of our algorithm, we identify a blamed func-
tion as follows. We first identify nodes that are reachable from
nodes of bad values by following only assignment edges. All these
nodes are at the same dereference level. Then we pick the func-
tion that contains such nodes and has the maximum frame level as
the blamed function. The intuition behind this algorithm is that the
function that was the first one to obtain a bad value should be the
one to ensure the value’s correctness.

A bug fix of a bad parameter in a call can either be done in the
caller before passing it or in the callee before using it. For this
type of bugs, our algorithm always blames the caller. We made this
choice for two reasons. First, the majority of bug fixes we have
observed in practice are in the caller. Second, the call site in the

caller function reveals more information than the callee function.
A developer can leverage the richer information to decide where
the actual fix should be.

By default, we use the name of the blamed function and its mod-
ule name for triaging. There is an exception. If our analysis stops
at a stack frame for which we do not have symbol information, we
do not have a function name. In this case, we only use the module
name. This allows RETracer to correctly blame third-party mod-
ules (that passed a wrong parameter) instead of correct first-party
code.

In the example shown in Figure 1, RETracer correctly blames a
function in the module mshtml.dll while the crash is in a function in
another module (gdi32.dll) three frames above on the stack. The bad
value was first obtained from [3,mshtml.dll+6a7879,{MEM:(RSI+10)}].

4. IMPLEMENTATION
We have implemented RETracer for crashes of native x86 and

x86-64 Windows binaries. RETracer consumes Windows crash
dump (.dmp) files and is implemented as a WinDbg [24] exten-
sion [33]. The prototype consists of roughly 66,000 lines of C and
C++ code.

RETracer does not support crashes caused by unhandled excep-
tions and access violations caused by stack overflows, unloaded
modules and bit flips. It identifies unhandled exceptions by simply
checking the exception code. It identifies stack overflows by check-
ing if the stack pointer passes the stack limit. RETracer identifies
unloaded modules by checking if a stack frame is from an unloaded
module. It relies on an existing implementation of [29] to detect bit
flips.

RETracer uses Windows libraries (MSDIA and MSDIS) for ex-
tracting debug information from Windows symbol (.pdb) files and
for disassembling machine instructions in Windows portable exe-
cutable (PE) files. MSDIA and MSDIS are released in Microsoft
Visual Studio [25]. Given an offset in a PE file, RETracer imple-
ments its own logic based on MSDIA and MSDIS to identify the
function containing that offset, find the code ranges of the func-
tion, disassemble them into instructions, and construct a control
flow graph of basic blocks.

RETracer currently relies on the debug information stored in
PDB files to reliably disassemble binaries. There exist good dis-
assemblers such as IDA [18] that can disassemble a binary with-
out the debug information based on heuristics. Although perfect
disassemly may not be achievable without the debug information,
RETracer can potentially work well with such disassemblers if they
can correctly disassemble most binaries. Such integration is for a
future exploration.

For each instruction, RETracer parses it into an intermediate rep-
resentation that specifies the opcode and the source and destination
operands. RETracer can parse all x86/x86-64 instructions. This
allows RETracer to apply its default operations in its analysis to all
instructions. The default operation for the backward taint analysis
is to clear the taint of the destination operand and propagate it to the
source operand. The default operation for the concrete reverse exe-
cution is to set the value of the destination operand to be unknown.
The default operation in the forward static analysis is to invalidate
all the value relations based on the destination operand.

In Figure 2, we show the x86/x86-64 instructions that individu-
ally handled by RETracer based on their special semantics. Recall
that the main goal of RETracer is to recover how a corrupted pointer
or array index was derived. This is why RETracer only applies the
default operations to bit and floating-point instructions (e.g., SAL
and FLD).

Some instructions like CMOV are conditional. We handle such

Category Instructions
Copy MOV, LEA, MOVSX, MOVZX, CMOV, MOVS
Arithmetic ADD, SUB, MUL, DIV, INC, DEC, SBB
Logic AND, OR, XOR, NEG
Stack PUSH, POP, PUSHA, POPA, PUSHF, POPF
Exchange XCHG, CMPXCHG
Control CALL, RET
Misc CLD, STD, SETcc

Figure 2: Instructions individually handled by RETracer based on
their special semantics.

instructions in a way similar to branches. We assume both con-
ditions are possible, analyze the instruction under each condition,
and merge their results. In the case of CMOV, we take the following
actions. For the backward taint analysis, we keep the taint of the
destination operand and propagate the taint to the source operand
if the destination operand is tainted. For the concrete reverse ex-
ecution, we set the destination operand to be unknown and do not
update the source operand. For the static forward analysis, we mark
the destination operand’s value to be invalid.

For function calls that follow the stdcall calling convention [44],
we need to unwind the stack on behalf of the callee if we do not
analyze it. This is critical for correctly keeping track of the stack.
To unwind the stack, we need the call site information to know if we
need to unwind the stack and, if so, how much we should adjust the
stack pointer. However, PDB files do not contain this information
for all indirect calls. To mitigate this problem, we developed the
following heuristics to infer the stack size to unwind. First, for an
indirect call to a function in a different module, we identify the
module that implements the function and use that module’s PDB
file to retrieve the function information. Second, for an indirect call
to a virtual function, we construct the virtual function table based
on the debug information in the PDB file, and use binary analysis
to infer which function in the virtual function table is being called.
Third, if both approaches fail, we analyze the PUSH instructions
right before the indirect call to infer the stack size to unwind.

Tail call [46] is a common compiler optimization to avoid adding
a new stack frame to the call stack. The simple stack walk based
on the frame pointers cannot recognize tail calls correctly. If tail
calls are not recognized, RETracer’s backward analysis will miss
the important data flow of parameter passing before the jump to the
called subroutine. In RETracer, we detect tail calls by checking
if the callee function based on the call instruction in the caller is
matched with the callee function on the stack. If not, we further
check if the first callee function has a JMP instruction at the end of
the function or the first and second callee functions are contiguous
(even the JMP instruction is saved in this case). If so, we recognize
it as a tail call and analyze the two callee functions together.

In RETracer, we currently whitelist eleven Windows modules
and all the functions in the namespace std since they are stati-
cally linked into each module. This is far less than the hundreds
of whitelisted modules and functions used by !analyze. More im-
portantly, RETracer handles whitelists conditionally as described in
Section 3.2.2, which allows us to catch rare bugs in the whitelisted
modules.

5. EVALUATION
In this section, we evaluate RETracer. We first present the results

on its accuracy. After presenting the results on its performance, we
report results from its deployment on Windows Error Reporting
(WER) [15] as well as two case studies.

5.1 Accuracy

5.1.1 Identified Blamed Functions
To evaluate RETracer’s accuracy in identifying blamed functions,

we searched for fixed bugs to use the bug fix as a ground truth.
We exhaustively searched the bug databases of Windows 8, Win-
dows 8.1, and Office 2013 and the database of WER to identify
all fixed bugs with associated crash reports that meet the following
conditions: (1) The crash was an access violation in native x86 or
x86-64 code. (2) The crash was not caused by a stack overflow, an
unloaded module or a bit flip [29]. (3) The crash report as well as
the PE and PDB files for the module in which the crash occurred are
available. Conditions (1) and (2) restrict the search to the domain
that our prototype is designed to handle. Condition (3) accounts for
the fact that RETracer needs the crash report as well as the PE and
PDB files to operate.

Our search identified 140 bugs. This is only a small fraction of
the total number of bugs in the databses we searched because our
search only includes bugs that were filed due to crash reports and
that were fixed. More importantly, WER retains crash reports only
for a short period of time. PE and PDB files will also be missing
if the crash occurred in a third-party module. Thus, condition (3)
eliminates a very large fraction of the eligible bugs.

Figure 3 shows the evaluation results for the 140 bugs. The figure
also lists the number of different modules in which these bugs were
fixed. The large module count shows that these bugs cover a broad
set of code bases. The total module count in Figure 3 is less than
the sum of the line items due to overlap.

We manually evaluated the correctness of the blamed functions
identified by RETracer and !analyze for each of the 140 bugs using
the following criterion. An identified blamed function is correct if
the bug fix modified the function or another member function of
its class or its callee function. We take into account member func-
tions in the same class because they are usually owned by the same
developer. A bug filed on the identified blamed function would
have been sent to the same developer who made the bug fix. We
consider callee functions because caller functions reveal more in-
formation from which a developer can decide to fix the bug in the
caller or callee.

It is worth noting that !analyze handles a wider range of software
failures than RETracer. For instance, !analyze analyzes program
hangs. Our comparison between RETracer and !analyze is focused
on the kind of crashes supported by RETracer.

We list the number of bugs for which the identified blamed func-
tions are either correct (by function or class or callee) or wrong in
Figure 3. RETracer is significantly more accurate than !analyze. It
reduces the number of triage errors by two thirds. We also evalu-
ated the impact of our static forward analysis by running RETracer
without it. This configuration made 36 triage errors, 9 (or 33%)
more than full RETracer.

We examined the 22 bugs for which RETracer failed to identify
a correct function. For 11 of them, the bug fixes are in functions
that are not on the crash stack. Most of these 11 bug fixes corrected
errors in the global program logic. For 9 of the bugs, the fixes are
in functions below the identified function on the stack (i.e., higher
frame levels). Higher dereference levels and loss of taint were the
main reasons for RETracer’s failure in these cases. For the remain-
ing two bugs, the fixes are in functions above the function blamed
by RETracer. In both cases, a pointer check was added right before
the bad pointer dereference.

In Figure 4, we show the histogram of the frame levels of func-
tions blamed by !analyze and RETracer. The function at the top of
a stack has frame level 0. We can see that !analyze blames the crash

Software #Bugs #Modules #Bugs (!analyze) #Bugs (RETracer)
Function Class Callee Wrong Function Class Callee Wrong

Windows 8 (user mode) 52 33 19 8 0 25 30 14 1 7
Windows 8.1 (user mode) 47 33 19 1 0 27 33 5 3 6
Office 2013 21 10 8 2 0 11 13 3 1 4
Windows 8 (kernel mode) 10 9 4 0 0 6 7 0 0 3
Windows 8.1 (kernel mode) 10 9 5 1 0 4 6 2 0 2
Total 140 83 55 12 0 73 89 24 5 22

Figure 3: Accuracy based on fixed bugs in different code bases. The counts under Class do not include bugs that are counted under Function
or Callee.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

e
r

o
f

B
u

gs

Frame Level

!analyze

RETracer

Figure 4: Histogram of the frame levels of blamed functions.

0

10

20

30

40

50

1 6 11 16 21 26 31 36

N
u

m
b

er
 o

f
B

u
gs

Number of Edges

Figure 5: Histogram of the shortest distance from the crash node to
the blamed function in the backward data flow graph.

function (which is at the top of the stack) for 100 out of the 140 bugs
we studied. On the other hand, RETracer blames a function that is
down the stack for 88 bugs. For one bug, !analyze blames the 11th
function (with frame level 10) on the stack because it whitelists
ntdll.dll. This function is wrong. In contrast, RETracer correctly
identifies the 8th function on the stack.

For three bugs, RETracer blames the 7th function on the stack.
It is correct in all three cases. RETracer blames the 16th function
on the stack for one bug. While this is correct in the sense that the
corrupted pointer was returned from a call in the 16th function, it
is not correct by our criterion as the developer chose to add a check
right before dereferencing the potentially corrupted value.

5.1.2 Backward Taint Analysis
Next we evaluate how well RETracer can recover concrete mem-

ory addresses in its backward taint analysis.
In Figure 5, we show a histogram of the shortest distance from

the crash node to the blamed function in the backward data flow
graph. The shortest distance is measured by the minimum number
of edges from the crash node to any node in the blamed function.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

B
u

gs

Number of Tainted Memory Operands

Figure 6: Histogram of the number of memory operands in the
shortest path from the crash node to the blamed function in the
backward data flow graph.

operand type count
constant 7
global variable 16
dynamic memory location 78
call site 39

Figure 7: Operand types of the final nodes of 140 taint paths.

We can see that, for the majority of the 140 bugs, RETracer needs
to track the taint in less than 11 edges. We checked the two bugs
for which RETracer tracks the taint in 20 and 36 edges. !analyze
blames the wrong function for the first bug and the correct func-
tion for the second bug after ignoring four functions based on its
whitelist. For both bugs, RETracer blames the correct function.
Interestingly, for the second bug, RETracer reversely traverses 34
of the 36 edges in whitelisted modules to find that the corrupted
pointer was passed from a module not in the whitelist.

In Figure 6, we show the histogram of the number of memory
operands in the shortest path from the crash node to the blamed
function in the backward data flow graph. Since the crash node
itself is a memory operand, the number of memory operands is at
least one. For the majority of the 140 bugs, RETracer needs to
propagate taint over at most four memory operands. We checked
the two bugs for which RETracer propagates taint over eight mem-
ory operands. For both of them, !analyze is wrong and RETracer is
correct.

Next, we examine the taint paths from crash nodes to blamed
functions and attempt to analyze why RETracer did not extend the
paths beyond the blamed functions. The taint propagation paths
may end at a constant, a global variable, a dynamic memory loca-
tion, or a call site. The last one means that the tainted value was
returned from a callee function that RETracer did not analyze.

Figure 7 displays counts for the operand types of the final nodes
for the 140 bugs. For the seven bugs with constant operands, RETracer
has found the actual end of the path. RETracer found the concrete
memory address for 68 of the 78 bugs associated with dynamic

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Run Time (s)

Figure 8: The cumulative distribution of RETracer’s run times over
3,000 randomly picked crashes.

memory locations. For these 68 bugs and the 16 global variable
bugs, the taint path ended because RETracer did not observe any
further write operations to the memory location. This can happen
if the memory location was written to by another thread or in a
function that completed on the crash thread before the crash and
that RETracer did not analyze. The latter is also the explanation for
the 39 bugs associated with call sites.

We examined the ten bugs for which RETracer stopped the back-
ward taint propagation at a dynamic memory location without find-
ing a concrete memory address. The values of the registers for
computing the memory addresses were missing mainly for one of
three reasons: branches (a register may have different values for
different branches), self dereference (e.g., MOV EAX,[EAX]), and in-
complete memory information (a register’s value is from a memory
location whose value is not stored in the crash report).

5.2 Performance
To evaluate the performance of RETracer, we randomly picked

3,000 crashes reported to WER in one day. Our experiments were
performed on an HP Z420 workstation with a quad-core CPU at
3.6GHz, 16GB RAM, and an OCZ-Vector150 480GB SSD.

We show the distribution of run times over the 3,000 crashes
in Figure 8. The median, average, and maximum run time is 1.1
seconds, 5.8 seconds, and 44.8 seconds. The run time is at most 13
seconds for 80% crashes, and at most 25 seconds for 99% crashes.

5.3 Deployment on WER
RETracer has been deployed on WER as the main crash triaging

solution since February 2015. If RETracer can analyze a crash and
return a blamed function, WER uses it for triaging. Otherwise,
WER uses the output from !analyze for triaging.

For a sample period of time, WER received a total of 590,282
x86 and x86-64 crash reports in Microsoft’s software (i.e., the PE
and PDB files for the crash module exist). 177,325 (30%) crash re-
ports were for an unhandled exception that is not access violation.
RETracer returned a blamed function for 285,288 (48%) crash re-
ports. The rest of them were due to stack overflows, unloaded mod-
ules or bit flips. For the crashes for which RETracer found a blamed
function, the function differed from !analyze’s function in 184,756
cases (65%).

Next we present two case studies from RETracer’s deployment.

5.3.1 SRWLock
With RETracer, we found that a top bug in x86-64 Internet Ex-

plorer is in the function RtlpWakeSRWLock in the module ntdll.dll, the
core user-level module in Windows. This bug was ignored pre-
viously because ntdll.dll was in the whitelist of !analyze and other

modules on the crash stack were blamed for the crashes. Though
ntdll.dll is in RETracer’s whitelist, RETracer still blames it because
the nodes in the backward data flow graph were all from ntdll.dll.

After some investigation, we found that the root cause of the
crashes was due to a wide-spread malware [1] not the code of SR-
WLock [47]. When the malware tries to unload itself, it modifies
the return address on the stack to avoid the return to itself after its
module win64cert.dll is unloaded. When manipulating the stack, the
malware misaligns the stack by mistake. This causes the data struc-
ture allocated on the stack by SRWLock to not be aligned at the
16-byte boundary. This may lead to a crash non-deterministically
because SRWLock requires the data structure to be 16-byte aligned.

The crash may happen on any thread that was using SRWLock
when the malware was trying to unload itself because SRWLock
uses a linked list to connect its data structures allocated on stacks.
Therefore, before RETracer, millions of crashes caused by this mal-
ware were wrongly scattered into a large number of groups and
were treated as unsolvable. With RETracer, we were able to put
all the crashes into one group correctly and revealed it as a top bug
in x86-64 Internet Explorer. More importantly, the focus on SR-
WLock led us to check stack alignment of all threads in the crash
process and discover the root cause.

5.3.2 NTFS
With RETracer, we found a high impact bug in ntfs.sys in Win-

dows 10 Preview. The root cause of the bug is that a pointer field
used in the crash function may be null and should be checked before
being used for dereference. The driver ntfs.sys is the key file system
driver in Windows. This bug affected a large number of Windows
10’s beta users. The bug was previously ignored by !analyze be-
cause the NTFS driver is in its whitelist. Instead, !analyze scattered
the crashes into multiple groups by blaming the third-party drivers
that called the NTFS driver.

The NTFS driver is also in RETracer’s whitelist, but RETracer
treated it as a regular module in this case because the backward data
flow was contained in the NTFS driver. This allowed RETracer to
correctly put all the crashes into a single group under the crash
function in NTFS. This raised the priority of the bug and led to the
proper fix.

6. THREATS TO VALIDITY
An external threat to validity is that our implementation and

evaluation were focused on the Windows platform running on x86
and x86-64 architectures. However, our design was general to oper-
ating systems and machine instruction sets. So we expect RETracer
to work on other architectures such as ARM and other operating
systems such as Linux with reasonable engineering efforts.

A construct validity threat is that we define our blamed function
to be correct if it was modified or it was in the same class as a func-
tion that was modified in a bug fix. This definition may not truly
reflect the actual correctness. The ultimate criteria should be deter-
mined by a developer that a blamed function is correct if it helps
isolate and fix the bug by grouping related crashes based on the
blamed function. However, it is hard to find the relevant developers
to verify each bug. Therefore, we used bug fixes as an objective
approximation.

An internal threat to validity is that we evaluated RETracer on
140 fixed bugs. This data set may not be representative. It is possi-
ble that we may have different results on open bugs. We made this
choice mainly because we need the source code fix as the ground
truth. To mitigate this threat, we did an exhaustive search to find all
bugs that we can experiment with.

7. RELATED WORK
There is a rich collection of literature on software debugging. In

this section, we relate RETracer’s design to previous approaches in
software debugging, including failure classification, fault localiza-
tion, and failure reproduction.

7.1 Automated Failure Classification
The goal of failure classification is to group failure reports of

the same bug together. This is important for large-scale crash re-
porting services, including Microsoft [15], Apple [6], Google [16],
Adobe [2], Ubuntu [41], Mozilla [28], to prioritize bugs and vali-
date their fixes. Previous work has considered three different types
of information that may be included in a failure report: memory
dumps, execution logs and failure descriptions. We group our dis-
cussion of previous work by these categories.

Memory Dump. In practice, memory dumps are the main source
of information used in failure classification. In contrast to execu-
tion logs, they do not entail overhead during regular execution. The
main disadvantage of memory dumps lies in the limited informa-
tion they contain. This line of work has focused on using the crash
stack to group failures because it is easy to collect and useful for
debugging [36].

We have discussed the approaches used in WER [15] and in
Ubuntu’s crash reporting service [41, 40]. Molnar et al. [27] pro-
posed another kind of stack hash for aggregating crashes. The main
limitation of stack hashes is that a fixed stack level does not work
well with all kinds of crashes. The choice of the crash function of
!analyze can be treated as a stack hash of a single stack frame.

Wu et al. [48] proposed to leverage information retrieval tech-
niques to identify blamed functions for a crash. Another line of
work [13, 21, 26] proposed to cluster crash reports based on the
similarity of crash stacks. The main limitation of these approaches
is that they require a training set and thus are not effective for newly
added functions. Furthermore, they approximate a function’s rele-
vance based on syntactic, indirect measures such as a function’s
depth on the crash stack, which may not correctly reflect the func-
tion’s involvement in a crash.

The main advantage of RETracer over previous work is that it
triages crashes based on an approximated execution history (the
backward data flow graph) without requiring execution logs. This
enables it to achieve better triaging accuracy by leveraging function
semantics as if an execution log were available.

Execution Log. This line of work [30, 39, 11] leverages recorded
execution logs and/or checkpoints to classify failures. Runtime
recording provides much more information than memory dumps,
but also introduces unacceptably high overhead on end-user ma-
chines during normal operation.

Failure Description. This line of work [4, 19] treats failure clas-
sification as a text categorization problem. It relies on the bug de-
scription manually written by various users to classify bugs. How-
ever, in most realistic end-user scenarios, such descriptions are not
available or not meaningful. In contrast, RETracer works directly
on memory dumps that are automatically generated.

7.2 Software Fault Localization
Software fault localization is a technique that locates one or more

possible root causes of a bug. The main difference between soft-
ware fault localization and failure classification is that the former
focuses on finding the exact root causes while the latter focuses on
grouping failures. There has been a large volume of research on
software fault localization [52, 12, 32, 17, 31, 35]. Next we sum-
marize previous work that is most relevant to RETracer in terms of
backward analysis.

Postmortem Symbolic Execution (PSE) [22] uses static back-
ward data flow analysis to reconstruct blamed execution traces from
a failure site. PSE was the first to use typestate [38] to analyze
program failures. Thin slicing [37] is another backward analysis
technique that is related to RETracer’s design. Unlike traditional
slicing [42, 3] that requires all program statements for reaching a
seed statement, thin slicing consists only of producer statements for
the seed, i.e., those statements that help compute and copy a value
to the seed.

Unlike RETracer, these approaches do not analyze crash reports,
but try to find bugs by means of static analysis. They are not suit-
able for triaging crashes in a large-scale crash reporting service.

7.3 Failure Reproduction
Reproducing failures is important for software debugging. Ex-

isting failure reproduction techniques [20, 50, 34, 7, 10] cannot be
directly used for failure classification on practical services because
of path explosion and their overhead on normal execution.

Zamfir et al. [51] proposed reverse execution synthesis to ad-
dress the limitation of path explosion faced by execution synthe-
sis [50]. Instead of finding an input, reverse execution synthesis
aims at constructing intermediate memory state near the failure site
that can lead to the failure. It does not do instruction-level reverse
execution as RETracer. Instead, it analyzes basic blocks backwards
and uses forward symbolic execution to analyze each basic block.
Evaluations of reverse execution synthesis on three small synthetic
concurrency bugs are reported in [49]. It is not clear if it can scale
to large programs for crash analysis and triaging.

8. CONCLUSION
We have presented RETracer, the first system that triages crashes

based on program semantics extracted from a memory dump. With-
out requiring an execution trace, RETracer performs backward taint
analysis to find out how a bad value such as a corrupted pointer
was derived and use it to identify a blamed function for triaging.
It combines concrete reverse execution with static forward analysis
to track concrete values of registers and memory locations for taint
propagation. We have implemented RETracer and deployed it on
Windows Error Reporting. Our experiments show that RETracer
reduces triage errors by two thirds and triages crashes in just six
seconds on average.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback.

We are grateful to Graham McIntyre for his tremendous help and
support in implementing and evaluating RETracer and deploying
it into production. We thank Galen Hunt for introducing us to the
triaging problem and giving us selfless help throughout the project.
We thank Gloria Mainar-Ruiz for helping us collect bug informa-
tion. We thank Reuben Olinsky for answering numerous ques-
tions we had during development. We thank Andrew Baumann and
Barry Bond for their help with the case studies. We thank the !ana-
lyze team for helping us with the integration and deployment.

10. REFERENCES
[1] 411-spyware.com. Win64cert.dll.

http://www.411-spyware.com/file-win64cert-dll.
[2] Adobe Systems Inc. Adobe crash reporter.

https://helpx.adobe.com/creative-suite/kb/
changing-settings-crash-reporter.html.

[3] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
localization using execution slices and dataflow tests. In

Proceedings of the 16th International Symposium on
Software Reliability Engineering (ISSRE), pages 143–151,
1995.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 28th International Conference on
Software Engineering (ICSE), pages 361–370, 2006.

[5] Apple Inc. Crash logs in xcode 6.3 beta 2.
https://developer.apple.com/news/?id=02232015d.

[6] Apple Inc. Technical note TN2123: CrashReporter.
https://developer.apple.com/library/mac/technotes/tn2004/
tn2123.html.

[7] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making
software failures reproducible by preserving object states. In
Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP), pages 542–565,
2008.

[8] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drinic, D. Mihocka, and J. Chau. Framework for
instruction-level tracing and analysis of program executions.
In Proceedings of the Second International Conference on
Virtual Execution Environments (VEE), pages 154–163,
2006.

[9] BSDaemon. Dynamic program analysis and software
exploitation: From the crash to the exploit code.
http://phrack.org/issues/67/10.html.

[10] Y. Cao, H. Zhang, and S. Ding. SymCrash: Selective
recording for reproducing crashes. In Proceedings of the
29th International Conference on Automated Software
Engineering (ASE), pages 791–802, 2014.

[11] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr. Taming compiler fuzzers. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
197–208, 2013.

[12] H. Cleve and A. Zeller. Locating causes of program failures.
In Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 342–351, 2005.

[13] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.
ReBucket: A method for clustering duplicate crash reports
based on call stack similarity. In Proceedings of the 34th
International Conference on Software Engineering (ICSE),
2012.

[14] GDB. Reverse debugging.
http://www.gnu.org/software/gdb/news/reversible.html.

[15] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (very) large: ten years of implementation
and experience. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP), pages
103–116, 2009.

[16] Google Inc. Chrome: Send usage statistics and crash reports.
https://support.google.com/chrome/answer/96817?hl=en.

[17] S. Hangal and M. Lam. Tracking down software bugs using
automatic anomaly detection. In Proceedings of the 24th
International Conference on Software Engineering (ICSE),
pages 291–301, 2002.

[18] Hex-Rays. IDA.
https://www.hex-rays.com/products/ida/index.shtml.

[19] N. Jalbert and W. Weimer. Automated duplicate detection for
bug tracking systems. In Proceedings of the 38th IEEE
International Conference on Dependable Systems and
Networks (DSN), pages 52–61, 2008.

[20] W. Jin and A. Orso. BugRedux: Reproducing field failures
for in-house debugging. In Proceedings of the 34th
International Conference on Software Engineering (ICSE),
2012.

[21] S. Kim, T. Zimmermann, and N. Nagappan. Crash Graphs:
An aggreated view of multiple crashes to improve crash
triage. In Proceedings of the 41st International Conference
on Dependable Systems and Networks (DSN), 2011.

[22] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang.
PSE: Explaining program failures via postmortem static
analysis. In Proceedings of the 12th ACM SIGSOFT 12th
International Symposium on Foundations of Software
Engineering (FSE), pages 63–72, 2004.

[23] Microsoft. The !analyze extension.
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff562112(v=vs.85).aspx.

[24] Microsoft. Debugging tools for Windows.
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff551063(v=vs.85).aspx.

[25] Microsoft. Visual Studio. https://www.visualstudio.com/.
[26] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and

L. Mignet. Automatically identifying known software
problems. In Proceedings of the 23rd International
Conference on Data Engineering (ICDE), pages 433–441,
2007.

[27] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs.
In Proceedings of the 18th USENIX Security Symposium,
pages 67–82, 2009.

[28] Mozilla. Mozilla crash reporter. https://support.mozilla.org/
en-US/kb/mozillacrashreporter?redirectlocale=en-US&
redirectslug=Mozilla+Crash+Reporter.

[29] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles,
cells and platters: An empirical analysis of hardware failures
on a million consumer PCs. In Proceedings of the Sixth
European Conference on Computer Systems (EuroSys),
pages 343–356, 2011.

[30] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying
software failure reports. In Proceedings of the 25th
International Conference on Software Engineering (ICSE),
pages 465–475, 2003.

[31] M. Renieres and S. Reiss. Fault localization with nearest
neighbor queries. In Proceedings of the 18th IEEE
International Conference on Automated Software
Engineering (ASE), pages 30–39, 2003.

[32] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
year 2000 problem. In Proceedings of the 6th European
Software Engineering Conference, pages 432–449, 1997.

[33] A. Richards. Writing a Debugging Tools for Windows
extension. In MSDN Magazine, March 2011.

[34] J. Robler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea.
Reconstructing core dumps. In Proceedings of the Sixth
IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 114–123, 2013.

[35] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve. Using
likely invariants for automated software fault localization. In
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 139–152, 2013.

[36] A. Schroter, N. Bettenburg, and R. Premraj. Do stack trace
help developer fix bugs? In Proceedings of the Seventh IEEE
Working Conference on Mining Software Repositories
(MSR), 2010.

[37] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In
Proceedings of the 28th ACM Conference on Programming
Language Design and Implementation (PLDI), 2007.

[38] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Transactions on Software Engineering, 12(1):157–171, Jan.
1986.

[39] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
Diagnosing production run failures at the user’s site. In
Proceedings of 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), pages 131–144, 2007.

[40] Ubuntu. Apport crash duplicates.
https://wiki.ubuntu.com/ApportCrashDuplicates.

[41] Ubuntu. Crash reporting.
https://launchpad.net/ubuntu/+spec/crash-reporting.

[42] M. Weiser. Programmers use slices when debugging.
Communications of the ACM, 25(7):446–452, July 1982.

[43] Wikipedia. Call stack.
http://en.wikipedia.org/wiki/Call_stack.

[44] Wikipedia. Calling convention.
http://en.wikipedia.org/wiki/Calling_convention.

[45] Wikipedia. Core dump.
http://en.wikipedia.org/wiki/Core_dump.

[46] Wikipeida. Tail Call. http://en.wikipedia.org/wiki/Tail_call.
[47] Windows Dev Center. Slim reader/writer locks.

https://msdn.microsoft.com/en-us/library/windows/desktop/
aa904937(v=vs.85).aspx.

[48] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim. CrashLocator:
Locating crashing faults based on crash stacks. In
Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA), 2014.

[49] C. Zamfir. Execution Synthesis: A Technique for Automating
the Debugging of Software. PhD thesis, EPFL, 2013.

[50] C. Zamfir and G. Candea. Execution synthesis: A technique
for automated software debugging. In Proceedings of the
Fifth European Conference on Computer Systems (EuroSys),
pages 321–334, 2010.

[51] C. Zamfir, B. Kasikci, J. Kinder, E. Bugnion, and G. Candea.
Automated debugging for arbitrarily long executions. In
Proceedings of the 14th USENIX Conference on Hot Topics
in Operating Systems (HotOS), pages 20–20, 2013.

[52] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE),
pages 1–10, 2002.

