
B2R2: Building an Efficient Front-End
for Binary Analysis

Minkyu Jung∗, Soomin Kim∗, HyungSeok Han∗, Jaeseung Choi∗, Sang Kil Cha∗

∗KAIST
{hestati, soomink, hyungseok.han, jschoi17, sangkilc}@kaist.ac.kr

Abstract—Current binary analysis research focuses mainly on
the back-end, but not on the front-end. However, we note that
there are several key design points in the front-end that can
greatly improve the efficiency of binary analyses. To demonstrate
our idea, we design and implement B2R2, a new binary analysis
platform that is fast with regard to lifting binary code and
evaluating the corresponding IR. Our platform is written purely
in F#, a functional programming language, without any exter-
nal dependencies. Thus, it naturally supports pure parallelism.
B2R2’s IR embeds metadata in its language for speeding up data-
flow analyses, and it is designed to be efficient for evaluation.
Therefore, any binary analysis technique can benefit from our
IR design. We discuss our design decisions to build an efficient
binary analysis front-end, and summarize lessons learned. We
also make our source code public on GitHub.

I. INTRODUCTION

Binary analysis is crucial in software security, and numer-
ous tools for it are available nowadays. For example, GitHub
currently accommodates hundreds of public repositories1, the
descriptions of which contain the term “binary analysis”. Many
fuzzing tools now employ binary analysis at the heart of it [17],
[34] to improve their performance.

Binary analysis tools typically consist of two major com-
ponents: the front-end and the back-end. The front-end, which
mainly consists of a disassembler and a lifter, disassembles
a given binary and translates it into what is known as an
Intermediate Representation (IR). The back-end takes in the
lifted IR as input, and performs the actual analysis on it, with
examples being CFG recovery [31], structural analysis [42],
[51], and type inference [32], [41]. All the existing frame-
works, whether they are open-source [4], [13], [18], [19], [44]
or closed-source [7], [28], [50], employ their own IR. For
example, IDA Pro [28] uses Microcode [26], and angr [43]
operates with VEX IR [37].

As the back-end depends on the front-end as well as its
IR, the performance of the front-end can obviously affect the
efficiency of binary analysis. Static binary analyses rely on
Control-Flow Graph (CFG) recovery techniques [18], [31],
which essentially require lifted IRs to start with. Dynamic

1https://github.com/search?q=%22binary+analysis%22&type=Repositories.

symbolic executors [23], [47] and dynamic taint trackers [38]
can directly benefit from employing an efficient binary lifter as
they perform lifting for every instruction encountered during
program execution. Yun et al. [52] recently confirmed that
the performance of lifting can be a bottleneck of symbolic
executors.

However, researchers have paid a little attention to the
designs of front-ends since binary lifting can be considered
as a simple translation process. Several efforts to design a
concise and easy-to-use IR have been made [10], [13], but not
in relation to designing an IR that can be quickly evaluated.
Many researchers have rather focused on devising effective
back-end algorithms [18], [25], [31], [32], [41], [42].

In this paper, we show that there are numerous points in
the design of the front-end and the corresponding IR that can
greatly benefit both the front-end itself and the back-end in
terms of their efficiency.

To name a few, we found that translating a binary into a
well-optimized IR is difficult, and employing a simple local
optimizer can greatly reduce the complexity of IRs. However,
such optimization passes can slow down the entire lifting
process as they must iteratively traverse the corresponding
Abstract Syntax Trees (ASTs). For example, the optimization
pass in our system occupies more than one-third of the total
running time of the front-end. We can mitigate this problem by
exploiting multi-core parallelism, but it is not straightforward
to disassemble instructions in parallel as their size varies
depending on the opcode. Thus, we propose a novel technique
for lifting binary instructions in parallel.

We also found that the structure and implementation of an
IR can drastically affect the performance of IR evaluations and
binary analyses. For example, existing IRs represent a number
with arbitrary-precision integers because machine instructions
often involve arithmetic operations between registers holding
numbers larger than 64 bits, e.g., the XMM and YMM registers
of x86. However, arbitrary-precision computation can substan-
tially slow down the IR evaluation process. Additionally, one
may design an IR, each expression of which incorporates
useful metadata about used variables in the expression. We
show that such a simple twist in the design of IR enables an
efficient data-flow analysis.

To the best of our knowledge, this paper presents the first
rigorous study of the design of an efficient binary analysis
front-end and its IR. In particular, we design and implement
a new binary analysis framework that we call B2R2, and

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23051
www.ndss-symposium.org

https://github.com/search?q=%22binary+analysis%22&type=Repositories

summarize critical design decisions we made to build an
efficient binary analysis front-end.

The key contributions of this work are as follows.

1) We propose a novel IR lifting technique that exploits
multi-core parallelism.

2) We study the current state-of-the-art binary analysis
front-ends, and discuss their design decisions.

3) We present a novel design of an IR that can speed
up the IR evaluation process.

4) We design and implement B2R2, an efficient binary
analysis framework that implements our techniques
and design choices.

5) We make our tool public on GitHub.

The rest of the paper is organized as follows. We first
summarize several related works on designing an IR. We then
present key observations on the structure of existing binary
analysis front-ends. Next, we present our design choices for
B2R2, our new binary analysis platform. Finally, we conclude
the paper by describing our experimental results.

II. RELATED WORK

There are a few IRs that provide their formal semantics.
GAL [9] and DBA [10], for instance, focus on the ease of
binary analysis by providing useful operators such as bit-
manipulation operators. BAP [13] presents a concise IR that
can explicitly represents all assembly side-effects. However,
none of them focuses on the efficiency of IR evaluation.

Kim et al. [30] show the first systematized study on existing
lifters. They characterize each lifter and their IRs based on
their expressiveness. In particular, they formally define the two
properties: explicitness and self-containment. An IR is explicit
if every IR statement updates only a single variable at a time,
and an IR is self-contained if it can exclusively describe the
semantics of machine instructions. However, their focus was on
testing the correctness of IRs, but not on designing an efficient
lifter nor evaluator.

Godefroid and Taly [24] use template-based program syn-
thesis to automatically translate x86 instructions into IRs. They
utilize a CPU to collect input-output samples for each instruc-
tion, and employ a program synthesis technique to generate
the corresponding IRs. Synthesis-based approach is further
investigated in [49], where the authors leveraged existing IR
translations to mine templates for synthesis. In this work, they
used a program synthesis technique to extend a lifter to support
previously unsupported architectures. Hasabnis and Sekar [27]
adopt a learning-based approach to automate lifting. Their
approach leverages a compiler to generate a dataset for IR-to-
assembly translation, and use the dataset to learn a mapping
from the assembly to the IR. While these works aim to reduce
the human efforts in implementing lifters, we rather focus on
designing a highly optimized lifter.

III. PRELIMINARY STUDY

Our research is inspired by examining existing binary
analysis tools. In particular, we picked 10 open-source tools
that do not rely on COTS software, and analyzed their front-
end. Table I presents the open-source tools that we analyzed.

TABLE I: Open-Source binary analysis tools we studied.

Tool Version Latest Release Repository URL W

angr 8.18.10.25 2018/10/25 https://github.com/angr/angr
BAP 1.5.0 2018/10/11 https://github.com/BinaryAnalysisPlatform/bap
BINSEC 0.2 2018/10/1 https://github.com/binsec/binsec
BinNavi 6.1.0 2018/09/27 https://github.com/google/binnavi
BitBlaze 1.0 2008/12/161 http://bitblaze.cs.berkeley.edu
Insight 0.4 2014/06/11 https://github.com/hotelzululima/insight
Jakstab 0.8.4 2017/03/31 https://github.com/jkinder/jakstab
Miasm 0.1.0 2018/11/12 https://github.com/cea-sec/miasm
radare2 3.1.3 2018/12/5 https://github.com/radare/radare2
rev.ng 0.1 2019/02/20 https://github.com/revng/revng
B2R2H 0.1.1 2019/03/22 https://github.com/B2R2-org/B2R2

1 We used the publication date of BitBlaze.
H This is our work.

Table II summarizes the characteristics of their lifter and their
IRs. Note we omit McSema [48] here because it is dependent
on IDA Pro [28].

A. Observation

By reviewing the tools, we found several crucial points in
the design of binary analysis front-ends. We highlight them
here in the order of columns appeared in Table II. All these
observations boil down to the design of B2R2, which are
described in §IV.

O1 (Parallelism). Many binary analysis tools do not support
pure parallelism due to their language choice. Half of the
tools use either Python (CPython) or OCaml, which cannot
take advantage of multiple cores [11]. Although the impact of
parallelizability of the front-end has been neglected, we show
that pure parallelism can greatly improve the performance of
it: our parallel lifting technique increases the overall lifting
speed up to twice on a modern desktop computer (see §V-B).

O2 (IR Optimization). Only a few tools such as BAP [13]
and PyVEX [3] perform IR optimization while lifting binaries.
IR optimization does not help in reducing analysis costs
unless there is a greater gain from evaluating the lifted IR
statements. However, we show that one can achieve significant
performance improvement for IR optimization by exploiting
multi-core parallelism: the lifting throughput can be better than
the one without IR optimization (§V-B).

O3 (AST Construction). Most tools use Abstract Syntax
Trees (ASTs) to represent their IRs and to perform back-end
analyses. However, there is one notable exception: radare2 [4]
does not build ASTs during the lifting process. Instead, it
simply emits a string representation for their IR. Such a design
choice enables efficient lifting, but, on the other hand, it makes
writing a static analyzer difficult.

O4 (Metadata in AST). Most existing IRs do not store any
extra information in their ASTs. Notably, PyVEX [3] preserves
type information of branch statements (PyVEX refers to it as
a jump kind) in their ASTs. BAP’s ASTs include attributes,
which can be used to specify arbitrary information to be passed
around between different analyses. However, we are not aware
of any existing tool that keeps specific metadata in their ASTs
for boosting binary-level data-flow analysis. In this paper, we
present a novel AST construction methodology that enables
efficient data-flow analysis by embedding metadata into IR
expressions (see §IV-D).

https://github.com/angr/angr
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/binsec/binsec
https://github.com/google/binnavi
http://bitblaze.cs.berkeley.edu
https://github.com/hotelzululima/insight
https://github.com/jkinder/jakstab
https://github.com/cea-sec/miasm
https://github.com/radare/radare2
https://github.com/revng/revng
https://github.com/B2R2-org/B2R2

TABLE II: Existing open-source tools1 for binary analysis.

Lifter Design IR Characteristics Architecture Support

Tool IR Name
Programming

Language Pu
re

Pa
ra

lle
lis

m

IR O
pt

im
iz

at
io

n

A
ST

C
on

st
ru

ct
io

n

M
et

ad
at

a
E

m
be

dd
in

g

E
xp

lic
it5

Se
lf-

C
on

ta
in

ed
5

H
as

h-
co

ns
ed

IR
Su

pp
or

t

x8
6

SI
M

D
Su

pp
or

t

B
ig

In
te

ge
r

Sp
lit

tin
g

x8
6

x8
6-

64

A
R

M
v7

A
R

M
v8

T
hu

m
b

M
IP

S3
2

M
IP

S6
4

PP
C

32

PP
C

64

angr [43] VEX2
C & Python 7 3 3 3 7 7 7 3 7 3 3 3 3 3 3 3 3 3(Valgrind [37])

BAP [13] BIL OCaml4 7 3 3 3 3 3 7 3 7 3 3 3 7 7 3 3 3 3
BINSEC [19] DBA OCaml 7 7 3 7 3 3 7 3 7 3 7 3 7 7 7 7 7 7
BinNavi [20] REIL Java 3 7 3 7 3 3 7 7 7 3 7 7 7 7 7 7 3 7
BitBlaze [44] Vine C & OCaml 7 3 3 7 3 3 7 3 7 3 7 3 7 7 7 7 7 7

Insight [22] Microcode3 C++ 3 7 3 7 3 3 7 7 7 3 3 3 7 7 7 7 7 7
Jakstab [31] SSL Java 3 7 3 7 3 3 7 3 7 3 7 7 7 7 7 7 7 7
Miasm [15] Miasm IR C & Python 7 7 3 7 7 7 7 3 7 3 3 3 3 3 3 7 3 7
radare2 [4] ESIL [1] C 3 7 7 7 3 3 7 3 7 3 3 3 3 3 3 3 3 7
rev.ng [18] LLVM C++ 3 7 3 7 7 3 7 3 7 3 3 3 7 7 3 7 7 7

B2R2H LowUIR F# 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7 7

1 We intentionally omit MCSema [48] as it relies on IDA Pro for disassembling binaries.
2 angr internally uses VEX IR, and it lifts binaries using a module called PyVEX [3], which is a Python wrapper of the VEX lifter [37] originally written in C.
3 This should not be confused with IDA Pro’s IR, which is also referred to as Microcode.
4 The ocaml-multicore project [29] aims to support multicore parallelism, but it is not yet integrated into the upstream.
5 We follow the definition of explicitness and self-containment in [30].
H This is our work.

O5 (IR Expressiveness). One can represent the expressiveness
of IRs with the concept of self-containment and explicit-
ness [30]. Most IRs are both explicit and self-contained, but
some of them are not. Notably, VEX IR uses external C func-
tions to express instruction semantics, which makes it difficult
to write a static analyzer with the IR. The expressiveness of
an IR can substantially impact the ease of writing a binary
analyzer. As an example, the symbolic execution engine of
angr, which internally utilizes VEX IR, contains handlers for
the external functions with 1.7 KLOC.

O6 (Hash-Consing). We found that none of the existing
binary analysis tools natively support hash-consing for their
IR. Hash-consing [21] is widely known to be crucial in
building a large-scale symbolic execution system [6], [12] as
it allows structurally the same ASTs to be stored in the same
physical memory, thereby significantly reducing the memory
use. However, none of the existing tools provides hash-consing
feature for their IRs.

O7 (Arbitrary-Precision Integers). Most existing tools em-
ploy big integers, i.e., arbitrary-precision integers, in their
IR implementation. Arbitrary-precision integers help represent
SIMD instructions, which use vector registers such as the
XMM and YMM registers of Intel, holding values greater than
64 bits. We note that most binary analysis tools support
SIMD instructions, but none of them split big integers into
smaller chunks to avoid the use of arbitrary-precision integers.
However, arbitrary-precision arithmetic is considerably slower
than fixed-precision arithmetic, which can be directly run on
an ALU. Our study shows that implementing the semantics of
machine code with fixed-precision integers is indeed straight-
forward, and can improve the speed of IR evaluation (§V-C).

O8 (Architecture Support). Many tools focus on a small set
of Instruction Set Architectures (ISAs) as one needs to write
a lifter for each different ISA independently, which requires
significant engineering effort. This observation encourages
the modular development of front-ends (§IV-A) as a binary
analysis framework can easily adopt another lifter in its front-

end. The last column of Table II demonstrates how each tool
supports several major architectures.

B. Experimental Setup

To further understand the characteristics of the binary
analysis tools and their front-ends, we ran each of the tools to
lift a set of real-world binaries obtained from Ubuntu 16.04.
Our main aim here is to compare the lifting throughput of
the tools in Table II. To solely measure the performance of
lifting, we ran our test binaries with each tool in a linear-
sweep fashion without performing extra IR optimization nor
back-end analyses such as function boundary identification or
CFG reconstruction. Although we ran lifters only in a linear-
sweep manner, the measured lifting throughputs can equally
affect the performance of recursive-descent lifters. We chose
not to use recursive-descent lifting in our experiments as not
every tool supports it.

To gather the binaries, we first set up both x86 and x86-64
Ubuntu on two fresh new VMs. We then extracted binaries
located at /bin, and /usr/bin from each VM. As a result,
we obtained 1,200 and 1,204 ELF binaries in total from the
x86 and the x86-64 VM, respectively.

We note that some binary lifters such as PyVEX can only
take in a raw binary as input, whereas other tools such as
BINSEC can only take in a well-formed binary, e.g., an ELF
binary, as input. Since adding support to a tool for parsing ELF
or PE binaries is time-consuming and error-prone, we decided
to use only raw binaries for our experiments. Specifically, we
extracted the .text section of each of the obtained binaries
with objcopy, and combined all of them into a single raw
binary file for 32- and 64-bit architecture, respectively. As a
result, we obtained 78MB blob and 79MB blob for 32-bit and
64-bit architecture, respectively. We also obtained one more
extra raw binary by extracting the .text section of a GNU
C library (LIBC) file from the x86 VM. In total, we have three
blobs of raw binary instructions as indicated in Table III.

TABLE III: Lifting time comparison.

w/ Pretty Printing (s) w/o Pretty Printing (s)

Tool LIBC x86 Blob x86-64 Blob LIBC x86 Blob x86-64 Blob

angr 39.6 2576.6 2360.2 27.2 1619.2 1312.2
BAP 13.3 643.8 512.4 4.8 261.0 221.6
BINSEC 25.5 2078.7 N/A1 12.4 660.8 N/A1

Miasm 171.5 9581.6 8686.5 133.3 7526.3 7448.5
radare2 1.8 104.1 94.3 1.7 92.3 84.5
B2R2 (0.0.1)2 11.4 568.8 455.9 2.3 86.3 71.8
B2R2 (0.1.1) 3.4 207.7 180.7 1.6 53.0 42.0

1 BINSEC only supports x86 architecture.
2 The first prototype before heavy optimizations.

Although we originally tried to run all the tools we studied,
we were only able to run five of them, because we had to
modify a significant amount of code to run the other tools
without performing extra analyses. Table III lists the five tools
that we were able to run. The third column of the table
indicates the release date of each version of the tools that
we used. We still had to manually modify some of the lifters
in the table, and we summarize all the modifications that we
made as follows.

PyVEX. We disabled IR optimization by modifying 3 lines of
PyVEX. We also wrote a Python script of 23 lines that
lifts a sequence of binary instructions to a sequence of
VEX IRs.

BAP. We used a BAP plugin, called Lifter Benchmark2 in
order to avoid running other analyses while lifting.

BINSEC. BINSEC does not take in a raw binary file as input.
Thus, we modified 38 lines of BINSEC to support lifting
the raw binary files.

Miasm. We wrote a Python script of 23 lines, which takes in
a raw binary as input, and lifts it to a sequence of Miasm
IR statements.

radare2. We used rasm2, a stand-alone command-line tool,
to get ESIL strings from the raw binary files. We patched
one line of rasm2 to ignore unhandled instructions. We
removed a single line (a printf statement) to suppress
IR printing for Table III.

C. Performance Comparison of Lifters

We ran the five tools on a single Intel 2.10 GHz Xeon E5
core with the three different raw binary blobs we obtained in
§III-B. Table III shows the lifting time comparison between
the tools. Column 2-4 of the table show how much time we
spent to lift and pretty-print IR statements in each tool, and
Column 5-7 present how much time we spent solely on lifting.
The result was rather surprising because the lifting throughputs
differ by two orders of magnitude in the worst case: the fastest
was radare2 (excluding B2R2), and it was more than 100×
faster than Miasm in lifting the binaries. Despite the fact that
radare2 is written in C, it was still substantially faster than
the other tools. Of course, being a fast lifter does not mean
that radare2 is the best binary lifter: it does not build ASTs
as discussed in O3, and it is relatively difficult to write an
analyzer with it.

2https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/
lifting-benchmark

Binary

Front-End

PARSE LIFT OPTIMIZE IR
I S

Fig. 1: Architecture of the B2R2 front-end.

Our preliminary study shows that most existing tools rather
focus on the ease of analysis, but not on the efficiency of their
front-end engines. Indeed, this is one of the key motivations
that inspired our research. Can we design a binary analysis
front-end on which one can easily write an analyzer, while
being still efficient? It is widely believed that writing a program
analyzer with a functional language that supports algebraic
data types and pattern matching [46] is significantly easier
than that with other languages. Therefore, our goal here is to
write an efficient binary analysis front-end while following a
functional paradigm.

O9 (Lifting Performance). There is huge room for im-
provement with regard to the speed of lifting, and one can
substantially boost up the speed with a proper engineering
effort. As shown in Table III, we were able to make B2R2
1.4× faster than its first prototype on our dataset, thanks to
the heavy optimizations we made on our system (§IV-H). Our
lifting throughput (without pretty printing) was twice faster
than that of radare2. Note that the pretty printing overhead of
radare2 is minimal since it does not build ASTs.

In this paper, we designed and implemented a new bi-
nary analysis framework that we call B2R2. To compare
the efficiency of B2R2 with that of existing tools, we ran
the optimized version of B2R2 on the same dataset, without
enabling our parallel lifting technique. Our experimental result
shows that B2R2 was 1.7×, 4.9×, 12.5×, and 30.6× faster
than radare2, BAP, BINSEC, and angr, respectively.

IV. B2R2 DESIGN

In this section, we present the overall design and imple-
mentation of B2R2 and its IR. Particularly, we enumerate key
design choices for building an efficient binary analysis front-
end and its IR.

A. Modular Front-End Design

B2R2 splits the front-end into the three main modules:
PARSE, LIFT, and OPTIMIZE. Figure 1 depicts the overall
architecture of the B2R2 front-end, which takes in a binary as
input and returns a lifted IR as output. PARSE first parses given
binary code to obtain a data structure I representing a sequence
of instructions in an architecture-neutral manner. LIFT then
lifts the given instructions to our own IR statements S, i.e.,
LowUIR, and finally, OPTIMIZE optimizes the IR statements
to produce the final IR statements.

We observe the similar design pattern from other binary
analysis tools such as BAP [13]. However, some tools do not
follow a modular design approach, which makes it difficult to
run each of the steps independently. For instance, PyVEX [3]
embeds the IR optimization process in its lifting function. Our

https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/lifting-benchmark
https://github.com/BinaryAnalysisPlatform/bap-plugins/tree/master/lifting-benchmark

13%
53%

34%

PARSE

LIFT

OPTIMIZE

Fig. 2: Performance breakdown of B2R2’s front-end.

modular design approach is one of the key ingredients for
enabling parallel lifting (§IV-B).

B. Parallel Lifting and Optimization

Parallel lifting is particularly challenging on Intel architec-
tures, i.e., x86 and x86-64, as they encode instructions with a
byte sequence of variable length. That is, we cannot predict
the next instruction unless we completely parse the current
instruction, and figure out the size of it. Therefore, the parsing
step (PARSE) cannot run in parallel.

However, given a list of parsed instructions, one can easily
lift them in parallel as there is no dependency between them.
B2R2 first accumulates parsed instructions from PARSE, and
performs lifting (LIFT) and optimization (OPTIMIZE) on them
in parallel. On the other hand, existing lifters run PARSE
and LIFT iteratively for each instruction, which fundamentally
precludes parallel computation.

Furthermore, in our preliminary experiments (§III-C), we
found that the PARSE module occupies only 13% of the CPU
cycle during the entire run of the front-end. Figure 2 describes
the performance breakdown for each module of B2R2’s front-
end. This means that 87% of the cost of the front-end can be
parallelized with our approach.

In our parallel lifting implementation, we accumulate N
parsed basic blocks from PARSE, and asynchronously lift and
optimize the accumulated blocks of instructions on multiple
threads. The number of accumulated basic blocks N is a
user-configurable parameter, and an optimal value of it can
differ depending on the machine. Note that we cannot simply
increase the value of N as we will consume more memory,
and give more pressure to our garbage collector. Automatically
configuring an optimal parameter value N is beyond the scope
of this paper.

We are not aware of any existing binary analysis tool that
performs parallel lifting nor optimization. Recall that many
existing tools are written in a language that does not support
pure parallelism (O1). Therefore, it is difficult to exploit
multiple cores within a single process. However, since B2R2
is written in a functional language that supports immutability,
we can easily achieve parallelism. In our experiments, parallel
lifting can improve the performance of the entire pipeline of
our front-end by twice (see §V-B).

METADATA µ ::= ExprInfo * ConsInfo
| ExprInfo

ENDIAN ε ::= BEndian | LEndian
UNOP ♦u ::= NEG | NOT
BINOP ♦b ::= ADD | SUB | MUL | DIV | SDIV | MOD |

SMOD | SHL | SHR | SAR | AND | OR |
XOR | CONCAT

RELOP ♦r ::= EQ | NEQ | GT | GE | SGT | SGE |
LT | LE | SLT | SLE

CASTOP ♦c ::= ZeroExt | SignExt
EXPRESSION exp ::= Num value size

| Var name size
| PCVar name size
| TempVar name size
| Name name
| UnOp ♦u exp µ
| BinOp ♦b exp exp µ
| RelOp ♦r exp exp µ
| Load ε size exp µ
| ITE exp exp exp µ
| Cast ♦c size exp µ
| Extract exp pos size
| Undefined size

STATEMENT stmt ::= ISMark addr len
| IEMark addr
| LMark name
| Put exp exp
| Store ε exp exp
| Jmp exp
| CJmp exp exp exp
| InterJmp exp exp
| InterCJmp exp exp exp
| SideEffect SideEffect

Fig. 3: The syntax of LowUIR.

C. LowUIR

As discussed in O5, an IR should be both explicit and
self-contained in order to ease the back-end analyses. B2R2’s
IR, which we refer to as LowUIR, also follows the same
design choice as most other IRs do. Figure 3 shows the formal
description of LowUIR.

Since a single machine instruction typically corresponds
to multiple IR statements, LowUIR explicitly marks the start
and the end of a machine instruction with the ISMark
and IEMark expression, respectively. In a similar manner,
LowUIR distinguishes branch instructions based on whether
the jump target is within the same instruction or not. For
example, the BSF instruction of x86 scans each bit in a register
within a loop. We can concisely write the semantics of it
with an intra-instruction jump, which we denote as Jmp or
CJmp. For those regular branch instructions between actual
machine instructions, e.g., the jne instruction of x86, we
use the InterJmp and InterCJmp statement. These IR
statements help us explicitly identify whether a control transfer
is within an instruction or not.

D. IR Metadata Embedding

Notably, each expression in LowUIR contains metadata
(ExprInfo) about the corresponding expression. More for-
mally, IR metadata is extra information stored in an AST
that does not affect the operational semantics of the IR. In
LowUIR, each ExprInfo stores (1) a set of used variables in
the expression, and (2) a boolean value indicating whether the
expression accesses memory. Such meta-information is useful
in writing a data-flow analyzer as we do not need to traverse
every node in each AST when we construct a use-def chain [5].
That is, constructing a use-def chain takes constant time with

our metadata. For example, we can write a taint analysis
tool with a simple over-tainting policy without traversing the
entire ASTs because we can figure out taint sources (uses) by
observing the metadata, and we can quickly recognize taint
sinks (defs) by checking the root nodes of the ASTs because
our IR is explicit, meaning that each statement can update only
a single variable.

Unfortunately, constructing such metadata can be pure
overhead for lifting. In our experiments, we observed about 3%
of performance degradation by adding metadata to LowUIR.
On the other hand, we leverage the metadata to boost up our
local optimizer (see §IV-E).

E. Block-Level Local Optimization

Writing semantics for machine instructions is fundamen-
tally difficult, and requires significant engineering effort. Fur-
thermore, translating machine instructions to optimized IR
statements is even harder. We often observe our IR statements
are not necessarily optimal: they contain redundant variable
assignments or even dead code. Recall from O2, only a few
lifters such as PyVEX and BAP perform optimization for
each basic-block they lift, which includes traditional local
optimization techniques such as constant folding, dead code
elimination, and various peephole optimizations [5].

B2R2 implements the three block-level local optimizations:
(1) constant folding with simple algebraic simplification, (2)
constant propagation, and (3) dead code elimination. We note
that we can leverage metadata of our IR expressions (§IV-D)
in order to efficiently perform the optimization methods. Our
block-level optimization reduces the number of IR statements
by 17% on our dataset (see §V-A).

F. Hash-Consed ASTs

Recall from O6, none of the existing lifters natively sup-
ports hash-consed ASTs although hash-consing can greatly
improve the performance of analyzers [6]. To use hash-consing
on an IR that does not natively support it, one needs to wrap
each AST with a new type, which potentially degrades the
performance, and requires substantial engineering effort.

B2R2 implements hash-consing within the LowUIR ex-
pressions by storing a hash key as well as a unique identifier
for each hash-consed AST in ConsInfo, which is tagged
per each expression along with the instruction-level meta
data ExprInfo. We implemented a thread-safe weak hash
table [21] to maintain the hash-consed ASTs that support
parallelism.

G. Bigint Splitting

Modern CPUs employ vector registers to support
instruction-level parallelism. For example, Intel’s Streaming
SIMD Extensions (SSE) adds a set of SIMD instructions
along with XMM registers such as XMM0 that can hold 128-
bit values. Although vector registers can store values of size
greater than 64 bits, the ALU of x86-64 processor still operates
with data of the native word size, i.e., 64 bits. Therefore,
most SIMD instructions divide values in a vector register and
perform multiple arithmetic operations in parallel with values
of size less than 64 bits. For example, consider “VADDPS

XMM0, XMM1” instruction of x86. This instruction splits each
value stored in XMM0 and XMM1 into four 32-bit values, and
adds each pair in parallel.

As we observed from O7, all the existing binary analysis
tools rely on arbitrary-precision integers to represent vector
registers. It is not surprising because it is straightforward to
implement the semantics of SIMD instructions with arbitrary-
precision integers. However, since arbitrary-precision integer
arithmetics incur significant runtime overhead as they cannot
run directly on an ALU. Some tools such as BAP and BINSEC
leverage an efficient library for arbitrary-precision arithmetics,
such as Zarith [36], which uses native integer operations
whenever big numbers can fit in a register (64- or 32-bit value),
but our observation suggests that we do not even need to rely
on such a library.

LowUIR implements the semantics of machine instructions
with only fixed-precision integers. To handle vector registers,
we split them into 64-bit pseudo-registers. For example, we
divide the XMM0 register of x86 into two pseudo-registers:
XMM0A, and XMM0B. We call this method of implementing the
binary semantics as bigint splitting. Our approach is inspired
by the fact that most SIMD instructions operate with small data
values anyways. The downside here is that bigint splitting can
produce a more number of IR statements than the one without
bigint splitting. However, our empirical results show that bigint
splitting helps in improving the IR evaluation speed (§V-C).
Furthermore, bigint splitting can simplify the overall semantics
of SIMD instructions as we do not need to explicitly extract
sub-values from a vector register.

H. Implementation

B2R2 consists of 45 KLOC of F# code. It does not rely
on other external dependencies, thus, it runs solely on the
.NET Common Language Runtime (CLR) [35]. We use F#’s
asynchronous workflows [39] in order to implement parallel
lifting and IR optimization (see §IV-B).

To make our front-end efficient, we have refactored and
heavily optimized B2R2 for several iterations. Specifically,
we have removed unnecessary closures and continuations,
and also reduced heap allocations as much as possible by
using local data structures such as ‘struct tuples’ [2] to lower
pressure on the garbage collector. We also replaced lists with
an array whenever we need random access to the collection,
and inlined performance-critical functions. Finally, we have
switched from discriminated unions to enums, and removed
exceptions in critical execution paths. As a result, the lifting
speed of B2R2 on a single core, without using the multi-
core parallel lifting method, has become 2.8× faster after
our rigorous optimization. The huge performance gain here
signifies the importance of engineering effort.

V. EVALUATION

In this section, we evaluate B2R2 with respect to the fol-
lowing research questions: (1) Does optimization help simplify
the IR statements? If so, how much slow down do we observe
by applying IR optimization? (2) Can we exploit multi-core
parallelism to speed up the lifting process?; (3) How much
speedup does bigint splitting provide in terms of evaluating
IR statements?

x86 x86-64

4 8 16 32 64 128 256 4 8 16 32 64 128 256
150

200

250

300

of basic blocks

Li
fti

ng
 ti

m
e

(s
)

w/ IR Optimization w/o IR Optimization

(a) On our server machine (Xeon E5-2620 v4).

x86 x86-64

4 8 16 32 64 128 256 4 8 16 32 64 128 256

75

100

125

150

of basic blocks

Li
fti

ng
 ti

m
e

(s
)

w/ IR Optimization w/o IR Optimization

(b) On our desktop machine (i7-8700).

Fig. 4: Parallel lifting performance comparison with varying number of basic blocks to accumulate.

TABLE IV: The number of IR statements before and after
applying IR optimization.

Before Opt. After Opt. Reduction Rate

LIBC Blob 2,297,506 1,906,024 17%
x86 Blob 138,882,883 114,718,934 17%

x86-64 Blob 103,848,026 87,456,016 16%

A. IR Optimization

How does IR optimization affect a binary analysis? To
answer this question, we first compared the number of IR
statements before and after applying our IR optimization.
Specifically, we lifted the same target binary blobs used
in §III, and applied our IR optimization on the lifted IR
statements. As a result, we were able to reduce the number of
statements by 16% and 17% in x86 and x86-64, respectively.
Table IV summarizes the result. Reducing the number of IR
statements is beneficial not only for IR evaluation, but also
for binary analyses in general. For example, one may expect
that IR optimization helps reduce the size of the resulting path
formulas.

However, IR optimization can cause an extra overhead
considering only the lifting process. In our experiments, IR op-
timization incurred 26.5% overhead on average on our dataset.
This result naturally motivates the next research question about
exploiting multi-core parallelism (§V-B).

B. Exploiting Multi-core Parallelism

Recall from §IV-B, our parallel lifting technique leverages
multiple cores to enhance the performance of the front-end.
To measure the effectiveness of parallel lifting, we compared
the total lifting time with and without our parallel lifting
technique. When running with parallel lifting, we measured the
time for the whole pipeline of the B2R2 front-end including
parsing, lifting, optimization, and pretty-printing. We used two
different machines for this experiment: (1) a 6-year-old Linux
server machine with Intel Xeon E5-2620 v4 (32 cores); and
(2) a modern Windows desktop machine with Intel i7-8700
(12 cores). We chose these machines to measure the impact of
parallel lifting on different environments.

On each machine, we changed N , the number of basic
blocks to accumulate, from 4 to 256, and measured the overall

lifting time (see §IV-B). Figure 4 illustrates the results. The
lines with dots represent the lifting time for parallel lifting.
As we increase the number of basic blocks to accumulate,
we observed better throughput until the number reaches 64.
However, when we accumulate more than 64 blocks, we started
to observe worse performance because the memory pressure to
the garbage collector increases as we accumulate more basic
blocks and their ASTs.

In both machines, however, the total lifting time with
parallel lifting was less than that without performing any IR
optimization. This means our parallel lifting technique can
significantly benefit our front-end engine, and it can even make
it faster than the speed of lifting without IR optimization.
Furthermore, our parallel lifting prevailed in all cases on our
desktop machine. It was at most 77% faster than the speed
of lifting without IR optimization. This corresponds to the
lifting speed of radare2 that we showed in our preliminary
study (§III-C). We suspect the reason why we observe signif-
icant differences between the two machines is that our server
machine has poor memory bandwidth, which is about a half
the one of the desktop.

C. Bigint Splitting

Recall from §IV-G, our bigint splitting enables representing
the semantics of binaries with fixed-precision integers. We can
observe the impact of bigint splitting by evaluating IR state-
ments. To measure such an impact, we took execution traces
from GNU coreutils and concretely emulated the executions
based on the concrete execution context.

Specifically, we first gathered 73 and 72 coreutils binaries
for x86 and x86-64, respectively. We then randomly selected
one of their unit tests for each program, and ran the target
program with our own execution tracer implemented with
Pin [33]. Our tracer runs a target program, and records register
and memory values accessed throughout the execution of the
program. We omitted several coreutils binaries that are difficult
to extract a test case from the unit test scripts. Given an
execution trace, our execution emulator lifts instructions stored
in the trace into LowUIR, and evaluates the IR statements by
using the register and memory values stored in the trace.

Figure 5 shows the rate between the execution time with
and without bigint splitting for each coreutils binary. Out of
total 145 binaries, only 135 binaries showed a significant

0

10

20

30

40

50

60

Programs in coreutils

D
iff

er
en

ce
 in

ev
al

ua
tio

n
tim

e
(%

)

(a) Comparison on the x86 coreutils.

0

10

20

Programs in coreutils

D
iff

er
en

ce
 in

ev
al

ua
tio

n
tim

e
(%

)

(b) Comparison on the x86-64 coreutils.

Fig. 5: Effectiveness of bigint splitting.

performance improvement. Overall, we observed 43.5% and
8.3% performance gain for x86 and x86-64, respectively.
We note that we have substantially more performance gain
on x86 because in our experiments, x86 coreutils binaries
had more number of complex arithmetic instructions such
as multiplication instructions: we observed three times more
imul instructions on x86 binaries. A multiplication operation
with arbitrary-precision integers is significantly slower than
the one with fixed-precision integers. On the other hand,
bigint splitting can slow down the evaluation of the other
10 binaries as the number of variables to handle increases,
which, in turn, slows down the insert and the find operations
of our dictionary, storing the mappings from variables to
the corresponding values. Our current implementation uses
a functional finite map, which internally uses a binary tree
to implement the dictionary. However, we can mitigate the
performance bottleneck here by employing a hash table.

We conclude that bigint splitting can lead to substantial
speed up for IR evaluation, especially when there are instruc-
tions involving complex arithmetic operations.

D. Threats to Validity

1) Representativeness of Target Binaries: When the in-
struction types in the target binaries are limited, our exper-
imental results can be undermined. To mitigate this problem,
we tried to collect a large number of binary executables from
a real-world OS for two different ISAs: x86 and x86-64.
We assumed that /bin and /usr/bin contain a reasonable
amount of binaries with various functionalities.

2) Correctness of our Source Modification: Recall from
§III-B, we have modified the source code of other binary
analysis tools. Although we sincerely examined the code, our
modification may have unexpected side-effects, which can
affect their lifting performance. To alleviate the concern, We
will put the diff files we used on GitHub along with the source
code of our system.

VI. B2R2 CAPABILITIES AND APPLICATIONS

Although the primary focus of this paper is on the front-
end, B2R2 currently includes various back-end modules too.
In this section, we describe two of the back-end modules we
have as well as an application that we developed on B2R2.

A. Return-oriented Programming Compilation

Building a Return-Oriented Programming (ROP) chain is
a crucial part of exploit development. B2R2 employs a ROP

compilation module that analyzes the given binary and returns
a ROP payload, which is primarily inspired by Q [40]. It first
searches for useful ROP gadgets, and combine the gadgets to
build a ROP payload for calling an arbitrary function, invoking
a system call, spawning a shell, or performing a stack pivoting.

B. Graph Visualization

B2R2 not only provides rich features for automatic binary
analyses, but it also aids analysts to manually inspect target
binaries. In particular, B2R2 has its own graph visualization
engine for drawing Control-Flow Graphs (CFGs). Many ex-
isting binary analysis frameworks such as BAP, BINSEC, and
PyVEX rely on external graph layout tools, which make it
difficult to analyze CFGs in an interactive manner. Our visu-
alization algorithm follows the standard hierarchical drawing
methods based on Sugiyama framework [45].

C. Symbolic Execution

Symbolic execution on binary code [8], [16], [43], [52] is
gaining growing attention from the research community, due
to its usefulness in various fields including vulnerability de-
tection, automatic exploit generation, and de-obfuscation. On
top of B2R2, we implemented a prototype symbolic executor
that leverages the useful features of B2R2. For example, using
the meta information of expressions of LowUIR (§IV-D), we
were able to decide whether a basic block should be evaluated
symbolically or not. This feature also makes it possible to
implement the constraint independence [14] without walking
ASTs. We also made use of hash-consed ASTs (§IV-F) with
expression memoization to speed up the symbolic engine.
Moreover, we observed meaningful performance enhancement
by leveraging block-level local optimization (§IV-E) and bigint
splitting (§IV-G). Discussing the detailed design and imple-
mentation of our symbolic execution engine is beyond the
scope of this paper.

VII. CONCLUSION

In this paper, we studied several design aspects of the front-
end of binary analysis. We found that current binary analysis
frameworks mostly focus on the ease of analysis, but not
on their efficiency. Furthermore, they neglect several critical
design points for their front-ends such as exploiting parallelism
and using fixed-precision integers, which can substantially
affect their efficiency. To demonstrate our claim, we designed
and implemented B2R2, a new binary analysis platform that is
functional-first, parallelizable, and efficient in both lifting and

evaluating IRs. We make our source code public on GitHub
(https://github.com/B2R2-org).

VIII. ACKNOWLEDGEMENTS

We thank Seungil Jung, DongYeop Oh, and KAIST Cyber
Security Research Center (CSRC) for their endless support in
developing our tool. We also thank our anonymous reviewers,
Ivan Gotovchits and David Brumley for their helpful feedback.
This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No.B0717-16-0109, Building a
Platform for Automated Reverse Engineering and Vulnerability
Detection with Binary Code Analysis).

REFERENCES

[1] “ESIL: Radare2 book,” https://radare.gitbooks.io/radare2book/content/
esil.html.

[2] “F# RFC FS-0006—struct tuples and interop with C# 7.0 tu-
ples,” https://github.com/fsharp/fslang-design/blob/master/FSharp-4.1/
FS-1006-struct-tuples.md.

[3] “PyVEX,” https://github.com/angr/pyvex.
[4] “Radare2,” https://github.com/radare/radare2.
[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, and Tools. Addison Wesley, 2006.
[6] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing sym-

bolic execution with Veritesting,” in Proceedings of the International
Conference on Software Engineering, 2014, pp. 1083–1094.

[7] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum,
“CodeSurfer/x86—a platform for analyzing x86 executables,” in
Proceedings of the International Conference on Compiler Construction,
2005, pp. 250–254.

[8] S. Bardin, R. David, and J.-Y. Marion, “Backward-bounded dse: Tar-
geting infeasibility questions on obfuscated codes,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2017, pp. 633–651.

[9] S. Bardin and P. Herrmann, “OSMOSE: Automatic structural testing of
executables,” Software Testing, Verification & Reliability, vol. 21, no. 1,
pp. 29–54, 2011.

[10] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The BINCOA framework for binary code analysis,” in Proceedings of
the International Conference on Computer Aided Verification, 2011, pp.
165–170.

[11] D. Beazley, “Inside the Python GIL,” http://www.dabeaz.com/python/
GIL.pdf.

[12] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proceedings of the
International Conference on Software Engineering, 2013, pp. 122–131.

[13] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Proceedings of the International Conference on
Computer Aided Verification, 2011, pp. 463–469.

[14] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the USENIX Symposium on Operating System Design
and Implementation, 2008, pp. 209–224.

[15] CEA IT Security, “Reverse engineering framework in python,” https:
//github.com/cea-sec/miasm.

[16] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2012, pp. 380–394.

[17] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2015, pp. 725–741.

[18] A. Di Federico, M. Payer, and G. Agosta, “Rev.ng: A unified binary
analysis framework to recover cfgs and function boundaries,” in Pro-
ceedings of the International Conference on Compiler Construction,
2017, pp. 131–141.

[19] A. Djoudi and S. Bardin, “BINSEC: Binary code analysis with low-
level regions,” in Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2015, pp.
212–217.

[20] T. Dullien and S. Porst, “REIL: A platform-independent intermediate
representation of disassembled code for static code analysis,” in Pro-
ceedings of the CanSecWest, 2009.

[21] J.-C. Filliâtre and S. Conchon, “Type-safe modular hash-consing,” in
Proceedings of the Workshop on ML, 2006, pp. 12–19.

[22] E. Fleury, O. Ly, G. Point, and A. Vincent, “Insight: An open binary
analysis framework,” in Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
2015, pp. 218–224.

[23] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44, 2012.

[24] P. Godefroid and A. Taly, “Automated synthesis of symbolic instruction
encodings from i/o samples,” in Proceedings of the ACM Conference
on Programming Language Design and Implementation, 2012, pp. 441–
452.

[25] I. Gotovchits, R. van Tonder, and D. Brumley, “Saluki: Finding taint-
style vulnerabilities with static property checking,” in Proceedings of
the NDSS Workshop on Binary Analysis Research, 2018.

[26] I. Guilfanov, “Hex-rays decompiler internals: Microcode,” https://
hex-rays.com/products/ida/support/ppt/recon2018.ppt.

[27] N. Hasabnis and R. Sekar, “Lifting assembly to intermediate represen-
tation: A novel approach leveraging compilers,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2016, pp. 311–324.

[28] Hex-Rays, “IDA Pro,” https://www.hex-rays.com/products/ida/.
[29] INRIA, “Multicore OCaml,” https://github.com/ocamllabs/

ocaml-multicore/.
[30] S. Kim, M. Faerevaag, M. Jung, S. J. D. Oh, J. Lee, and S. K.

Cha, “Testing intermediate representations for binary analysis,” in
Proceedings of the International Conference on Automated Software
Engineering, 2017, pp. 353–364.

[31] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,”
in Proceedings of the International Conference on Computer Aided
Verification, 2008, pp. 423–427.

[32] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse engi-
neering of types in binary programs,” in Proceedings of the Network
and Distributed System Security Symposium, 2011, pp. 251–268.

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the ACM Conference on Programming Language Design and Imple-
mentation, 2005, pp. 190–200.

[34] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “Fuzzing: Art, science, and engineering,” CoRR, vol.
abs/1812.00140, 2018. [Online]. Available: http://arxiv.org/abs/1812.
00140

[35] Microsoft, “Common language runtime (CLR) overview.” https://docs.
microsoft.com/en-us/dotnet/standard/clr.

[36] A. Miné, X. Leroy, P. Couq, and C. Troestler, “The zarith library,”
https://github.com/ocaml/Zarith.

[37] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the ACM Confer-
ence on Programming Language Design and Implementation, 2007, pp.
89–100.

[38] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in Proceedings of the Network and Distributed System
Security Symposium, 2005.

[39] T. Petricek and D. Syme, “The F# computation expression zoo,” in
Proceedings of Practical Aspects of Declarative Languages, 2014, pp.
33–48.

[40] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy,” in Proceedings of the USENIX Security Symposium, 2011,
pp. 25–41.

https://github.com/B2R2-org
https://radare.gitbooks.io/radare2book/content/esil.html
https://radare.gitbooks.io/radare2book/content/esil.html
https://github.com/fsharp/fslang-design/blob/master/FSharp-4.1/FS-1006-struct-tuples.md
https://github.com/fsharp/fslang-design/blob/master/FSharp-4.1/FS-1006-struct-tuples.md
https://github.com/angr/pyvex
https://github.com/radare/radare2
http://www.dabeaz.com/python/GIL.pdf
http://www.dabeaz.com/python/GIL.pdf
https://github.com/cea-sec/miasm
https://github.com/cea-sec/miasm
https://hex-rays.com/products/ida/support/ppt/recon2018.ppt
https://hex-rays.com/products/ida/support/ppt/recon2018.ppt
https://www.hex-rays.com/products/ida/
https://github.com/ocamllabs/ocaml-multicore/
https://github.com/ocamllabs/ocaml-multicore/
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://github.com/ocaml/Zarith

[41] E. J. Schwartz, C. F. Cohen, M. Duggan, J. Gennari, J. S. Havrilla,
and C. Hines, “Using logic programming to recover C++ classes
and methods from compiled executables,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2018, pp. 426–
441.

[42] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 de-
compilation using semantics-preserving structural analysis and iterative
control-flow structuring,” in Proceedings of the USENIX Security Sym-
posium, 2013, pp. 353–368.

[43] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“(state of) the art of war: Offensive techniques in binary analysis,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2016,
pp. 138–157.

[44] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in Proceedings of
the International Conference on Information Systems Security, 2008,
pp. 1–25.

[45] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[46] D. Syme, G. Neverov, and J. Margetson, “Extensible pattern matching
via a lightweight language extension,” in Proceedings of the ACM
SIGPLAN International Conference on Functional Programming, 2007,
pp. 29–40.

[47] N. Tillmann and J. De Halleux, “Pex–white box test generation for
.NET,” in Proceedings of the International Conference on Tests and
Proofs, 2008, pp. 134–153.

[48] Trail of Bits, “McSema,” https://github.com/trailofbits/mcsema.
[49] R. van Tonder and C. Le Goues, “Cross-architecture lifter synthesis,” in

Proceedings of the International Conference on Software Engineering
and Formal Methods, 2018, pp. 155–170.

[50] Vector 35, “Binary Ninja,” https://binary.ninja/.
[51] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No more

gotos: Decompilation using pattern-independent control-flow structur-
ing and semantics-preserving transformations,” in Proceedings of the
Network and Distributed System Security Symposium, 2015.

[52] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in Proceedings
of the USENIX Security Symposium, 2018, pp. 745–762.

https://github.com/trailofbits/mcsema
https://binary.ninja/

	Introduction
	Related Work
	Preliminary Study
	Observation
	Experimental Setup
	Performance Comparison of Lifters

	B2R2 Design
	Modular Front-End Design
	Parallel Lifting and Optimization
	LowUIR
	IR Metadata Embedding
	Block-Level Local Optimization
	Hash-Consed ASTs
	Bigint Splitting
	Implementation

	Evaluation
	IR Optimization
	Exploiting Multi-core Parallelism
	Bigint Splitting
	Threats to Validity
	Representativeness of Target Binaries
	Correctness of our Source Modification

	B2R2 Capabilities and Applications
	Return-oriented Programming Compilation
	Graph Visualization
	Symbolic Execution

	Conclusion
	Acknowledgements
	References

