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Abstract

Reassembly, a branch of static binary rewriting, has become

a focus of research today. However, despite its widespread use

and research interest, there have been no systematic investiga-

tions on the techniques and challenges of reassemblers. In this

paper, we formally define different types of errors that occur

in current existing reassemblers, and present an automated

tool named REASSESSOR to find such errors. We attempt

to show through our tool and the large-scale benchmark we

created the current challenges in the field and how they can

be approached.

1 Introduction

Static binary rewriting is imperative to software security in its

ability to inline security monitors to binaries without access to

the source code. This technique is often used to harden legacy

binaries by ensuring Control Flow Integrity (CFI) [29,98,102]

or by randomizing code layouts [20, 41, 46, 61, 87, 92, 98].

It has also been well developed in other domains such as

malware analysis [12, 24, 45, 97], software debloating [65],

bug finding [26, 57], and automated code repair [72].

Despite the surging research interests, however, current

state-of-the-art techniques still suffer from either applicability

or performance overhead. Patch-based approaches, such as

Detour [35], Bistro [24], and E9Patch [27], incur little over-

head but are limited in the scope of instrumentation points.

Table-based approaches such as PSI [100], Multiverse [5],

and µSBS [71], have no such limit but impose both a time and

space overhead.

In contrast, reassembly [26,32,88,89,95] is a recent attempt

in static binary rewriting to remedy both of these problems. It

allows an analyst to add instrumentation to any point in the

target binary while keeping both the time and space overhead

to a minimum. The key insight here is to first translate a binary

into a relocatable Intermediate Representation (IR), where in-

structions can be re-positioned without having to modify their

syntax [63]. For example, disassembly instructions involve

hard-coded addresses or offsets, whereas IRs would contain

symbolic labels to refer to such addresses. Therefore, such

IRs can be easily instrumented with an inline monitor and

compiled back to produce a rewritten binary.

To build a relocatable IR from a binary, however, one needs

to be able to recover the cross-references in the binary. This is

often referred to as a symbolization challenge. At a high level,

symbolization is the process of restoring symbolic labels, used

to make a cross-reference in the IR, from the numeric values

in the target binary. Symbolization is challenging because (1)

one needs to first identify which numbers from the binary to

symbolize, and (2) the numbers in the binary are often formed

by a compound symbolic expression.

For instance, consider the following instruction “push

0x42424242”, where 0x42424242 is the address of a global

variable foo. When the instruction is given without any fur-

ther information, we cannot simply determine that the number

refers to the address of foo: It can be merely a constant literal

used in the program. The problem only exacerbates when the

binary dynamically computes such addresses at runtime.

For these reasons, reassembly has been limited to small

size binaries with predictable control references. Although

several heuristics-based solutions have been proposed [32, 88,

89], they all suffer from the imprecision of the underlying

symbolization technique: They often mistakenly identify a

literal as a pointer or vice versa.

Nonetheless, reassembly is gaining substantial attention

especially with increasing use of Position Independent Exe-

cutable (PIE) binaries. PIEs use relative addressing modes,

such as Program Counter (PC)-relative or Global Offset Ta-

ble (GOT)-relative addressing, and make a relocation table

entry in the binary for handling absolute addresses. Therefore,

reassemblers do not need to distinguish absolute addresses

from constant literals for PIEs, making it seemingly easier

than non-PIEs. Indeed, the authors of RetroWrite even claim

that their tool can soundly rewrite PIEs without the precise

recovery of the Control-Flow Graph (CFG) [26].

However, such emerging research trends in reassembly

could possibly give a false impression of the field because



position-independence itself cannot be a solution to the sym-

bolization challenge as other researchers have also noted [32].

Notably, compiler-generated values, such as jump table en-

tries, do not always have relocation information, making it

difficult to recover the original symbolic labels. Furthermore,

imprecise disassembly can cause various reassembly failures

as well as symbolization errors.

In this paper, we systematically analyze such problems

with our tool, named REASSESSOR. We first formally define

several different errors that occur in each reassembler. We

then design and implement REASSESSOR to identify them. At

a high level, REASSESSOR finds reassembly errors by diffing

compiler-generated assembly code and reassembler-generated

assembly code. Note that reassemblers are widely known to

have symbolization errors [32,88], but there have been limited

attempts at systematically finding them.

We ran REASSESSOR on the benchmark consisting of

14,688 binaries compiled with various compilers and com-

piler options. With our tool and benchmark, we found that

none of the existing reassemblers is free from symbolization

errors, and we were able to create a meaningful patch to one

of those tools, too. These results show the current challenges

in reassembly and provide guidance for future research. In

summary, we make the following contributions:

• We propose a formal framework to classify reassembler

errors into eight categories.

• We demonstrate REASSESSOR, an automated tool for

finding the defined errors from reassemblers.

• We present a thorough benchmark for evaluating re-

assemblers.

• We identify various real-world reassembly errors from

state-of-the-art tools and summarize lessons learned.

• We publicize our tool as well as our benchmark

to foster future research: https://github.com/

SoftSec-KAIST/Reassessor

2 Reassembly

In this section, we first clarify several terms including reassem-

bly and symbolization. We then formally define symbolization

errors and categorize different error types.

2.1 Reassembly and Symbolization

The term “reassembly” was first introduced in 2015 by

Uroboros [89]. At a high level, reassembly is a static binary

rewriting process that works by transforming a binary into a

relocatable representation such as an Intermediate Represen-

tation (IR) or an assembly. The relocatable form can then be

trivially instrumented and compiled (or assembled) back to a

rewritten binary.

To create a relocatable representation, reassemblers need to

first analyze which parts in the binary code denote a reference

and turn these references into a symbol. We call such a step

the symbolization process. Note that reassembly is different

from binary lifting because binary lifting does not involve the

symbolization process [39, 44].

The idea of translating a binary into an intermediate

form and then recompiling it back to a binary dates back

to the 1980s [52]. Traditionally, we call such a technique

as binary translation [78], which mainly focused on the

cross-architecture retargetability, i.e., ISA-to-ISA transla-

tion [21, 76, 91, 103]. Previous static binary translators relied

on a specific run-time environment, often referred to as a fall-

back mechanism, to handle difficult-to-analyze cases such as

indirect jumps [22, 23, 83].

One might view reassembly then as a way to achieve fully

static binary translation that does not rely on any runtime

support. Although there has been a substantial body of work

on static binary translation, such as SecondWrite [58, 79],

LLBT [77], McSema [25], and Zipr [33], they do not fully

leverage symbolization, by either limiting their instrumenta-

tion capabilities or relying on runtime support. In this paper,

we use the term reassembly to exclusively mean a fully static

binary translation technique that satisfies the followings:

1. The technique should not rely on runtime support. For

example, we do not regard BinRec [1] as a reassembler

because it operates on execution traces.

2. The technique should use a symbolization approach

when generating a relocatable representation.

2.2 Symbolization Error

During a symbolization process, reassemblers may miss some

labels to symbolize, turn some immediate values into wrong

labels, or even falsely symbolize some constant literals al-

though they should never be symbolized. We call such an

error “symbolization error”, and formally define it after intro-

ducing several terms and assumptions.

Assembly File (α). For brevity, we assume that both com-

pilers and reassemblers produce only a single assembly file α
per program. Even if a tool produces multiple assembly files

in practice, we can simply combine them to form a single file.

We further assume that assembly files are in the Intel syntax.

Assembly and Reassembly Processes. Let αc be an as-

sembly file obtained from a compiler, and let β be the binary

obtained by assembling αc. We denote the assembly process

by Asm. That is, Asm(αc) = β. We then let αr be the assembly

file obtained by reassembling β without adding any instru-

mentation. We use Reasm to denote the reassembly process:

Reasm(β) = αr. Figure 1 illustrates the relationships between

αc, αr, and β. To detect symbolization errors, we analyze the

difference of the labels in αc and αr.

https://github.com/SoftSec-KAIST/Reassessor
https://github.com/SoftSec-KAIST/Reassessor


L1129:

push rbp ; Code(αc)[n]
lea rax, [rip + L1129] ; Code(αc)[n+1]
...

L4010:

.byte 0x78 ; Data(αc)[m]

.byte 0x56 ; Data(αc)[m+1]

.byte 0x34 ; Data(αc)[m+2]

.byte 0x12 ; Data(αc)[m+3]

.quad L1204 ; Data(αc)[m+4]

Compiler-

generated

assembly (αc)

...

0x1129: 55 ; push

0x112a: 48 8d 05 f8 ff ff ff ; lea

...

0x4010: 78 56 34 12 ; 0x12345678

0x4014: 04 12 00 00 00 00 00 00 ; L1204

Binary (β)

L1129:

push rbp ; Code(αr)[n]
lea rax, [rip + L1129] ; Code(αr)[n+1]
...

L4010:

.byte 0x78 ; Data(αr)[m]

.byte 0x56 ; Data(αr)[m+1]

.byte 0x34 ; Data(αr)[m+2]

.byte 0x12 ; Data(αr)[m+3]

.quad L1204 ; Data(αr)[m+4]

Reassembler-

generated

assembly (αr)

Asm(αc)

Reasm(β)

Code(αc)[n+1].disp Code(αc)[n+1].disp.ty= TypeIII

Data(αr)[m+4].value

Addr(Code(αc)[n])
= 112916

Addr(Code(αr)[n])
= 112916

Figure 1: Visual description of symbols used.

Normalization. To ease the comparison between αc and

αr, we assume that both αc and αr are normalized to satisfy

the following criteria. First, every assembly label should start

with the prefix ‘L’ followed by its address in β. For example,

in Figure 1, the label in Line n of αr is normalized to L1129

as its corresponding address in β is 0x1129. For those labels

with a special suffix, such as @GOTOFF, we preserve the suffix

while normalizing the main part. Second, any numbers in an

assembly file, whether they are from code or data, should be

represented in hexadecimal notation. Finally, every concrete

value declared in a data section should be one-byte long.

While a long integer 0x12345678 can be defined as “.long

0x12345678”, our normalization process will break it into

type relocexpr_type = TypeI | TypeII | ... | TypeVII

type relocexpr = { // Relocatable expression.

str: string, // String representation of the expr.

ty: relocexpr_type // Relocatable expression type.

}

type instruction = {

str: string, // Assembly instruction string.

displ: relocexpr, // displacement or null.

imm: relocexpr // immediate or null.

}

type dataline = {

value: relocexpr // data value or null.

}

Figure 2: ML-style types used in our formal framework.

Table 1: Categorization of relocatable expressions.

Syntax

Atomic Composite

S
em

an
ti

cs Absolute address Type I Type II

PC-relative address Type III Type IV

GOT-relative address Type V Type VI

Label-relative address - Type VII

four consecutive one-byte values as shown in our example

(see the label L4010). Note, however, data declarations with

a symbolic expression (e.g., the lines that start with .quad in

our example) will not be partitioned.

Relocatable Expression. Assembly code is relocatable as

any addresses or relative offsets are denoted by a symbolic ex-

pression, which will be called a relocatable expression. For ex-

ample, the PC-relative offset of the lea instruction in Figure 1

is shown as a relocatable expression L1129. More formally,

a relocatable expression in an assembly file is a symbolic

expression with one or more labels, which will be eventually

translated into a number, e.g., an immediate or a displacement,

in the corresponding binary. In this paper, we represent a re-

locatable expression as a record (relocexpr) as defined in

Figure 2. The ty field of relocexpr returns a relocatable ex-

pression type relocexpr_type, which is used to distinguish

relocatable expressions based on their syntactic and semantic

properties as shown in Table 1.

1. Syntax-based Classification. We say a relocatable ex-

pression is atomic if it solely consists of a single label,

and composite if it is represented with a compound ex-

pression. For example, in Figure 3, .LBB0_1 is an atomic

expression, whereas msg+16 is a composite, which is

translated into the displacement 0x200a06 in the binary

shown in Figure 3c. However, it is difficult to recover

the original relocatable expression by merely looking

at the displacement. Moreover, composite relocatable

expressions are present in most binaries: 97.4% of the

binaries in our benchmark (§5.2.3).

2. Semantics-based Classification. We also distinguish

relocatable expressions based on their semantics about

how they are used to compute an Effective Address (EA).

In Intel, there are four different ways to compute an EA.

First, one may use an absolute address to directly refer

to an EA. One can also obtain an EA in relation to a

base point, where the base point is (1) the current Pro-

gram Counter (PC), (2) the Global Offset Table (GOT),

or (3) an arbitrary label other than GOT. Among the

three cases, we found that label-relative offsets always

have the form of “label1 (op) label2”, where (op) is

a binary operator. Thus, they can only be a composite.



Accessing Code. Let Code be a function that takes in an

assembly file f as input and returns an array of instructions

in f as output. Each instruction is a record (instruction)

defined in Figure 2. In Intel assembly instructions, relocat-

able expressions can only appear as a displacement (disp) or

as an immediate (imm).1 Thus, the instruction record has

two dedicated fields to help access relocatable expressions.

Note we do not need to distinguish between operands here as

there can be at most one displacement and one immediate per

instruction in Intel [36]. Both the fields are nullable, meaning

that they can return a null when there is no displacement/im-

mediate in the instruction or the instruction has a constant

displacement/immediate, i.e., no symbolic expression. In Fig-

ure 1, for example, we can access the displacement of the mth

instruction of αc with Code(αc)[m].disp.

Accessing Data. Similarly, let Data be a function that takes

in an assembly file and outputs an array of assembly lines

that are associated with a data value. We call such assembly

lines a data line (dataline type in Figure 2). We access the

value of a data line with the value field, which returns a

relocatable expression (relocexpr) if it exists. It will return

null when the data line has a constant value. In Figure 1,

for instance, Data(αr)[m].value = null and Data(αr)[m+
4].value = L1204.

Accessing Addresses. We let Addr be a function that takes

in either an instruction or a dataline as input, and returns

the corresponding address in β. This function makes explicit

the relationship between two assembly lines respectively in

αc and αr by referring to the address in the binary β. The red

boxes in Figure 1 shows that Addr returns the address 0x1129

for both Code(αc)[n] and Code(αr)[n].

Symbolization Error. A symbolization error occurs when

two assembly lines respectively in αc and αr have a difference

in their labels while representing the same instruction or data

value in β. We now define it formally as follows.

Definition 1 (Symbolization Error). Given αc and αr =
Reasm(Asm(αc)), Reasm has a symbolization error if and only

if there exist m and n such that
(

Addr(Code(αc)[m]) = Addr(Code(αr)[n])
∧ Code(αc)[m] 6= Code(αr)[n]

)

∨

(

Addr(Data(αc)[m]) = Addr(Data(αr)[n])
∧ Data(αc)[m] 6= Data(αr)[n]

)

.

Symbolization errors can be divided into two cases: false pos-

itives and false negatives. We say there is a False-Negative

(FN) error when the reassembler fails to recover a relocatable

expression from a number in β = Asm(αc), while the corre-

sponding assembly line in αc has a relocatable expression.

1A displacement is a number in a memory operand, e.g., 42 in mov rax,

[rdx + 42]. An immediate is a number-only operand, e.g., 42 in push 42.

1 char msg[] = "Hi Reassembler\n";

2 void foo()

3 {

4 for(char *p = msg; p < msg+sizeof(msg); ++p)

5 putchar(*p);

6 }

(a) Source code in C.

.section .text

foo:

push r14

push rbx

push rax

lea rbx, [rip+msg]

lea r14, [rip+msg+16]

.LBB0_1:

movsx edi, byte ptr [rbx]

xor eax, eax

call putchar@PLT

inc rbx

cmp rbx, r14

jb .LBB0_1

add rsp, 8

pop rbx

pop r14

ret

.section .data

msg:

.asciz "Hi Reassembler\n"

(b) x86-64 assembly code

produced by Clang.

Disassembly of section .text:

0x628: push r14

0x62a: push rbx

0x62b: push rax

0x62c: lea rbx, [rip+0x2009fd]

0x633: lea r14, [rip+0x200a06]

0x63a: movsx edi, BYTE PTR [rbx]

0x63d: xor eax, eax

0x63f: call 520

0x644: inc rbx

0x647: cmp rbx, r14

0x64a: jb 63a

0x64c: add rsp, 0x8

0x650: pop rbx

0x651: pop r14

0x653: ret

; ...

Contents of section .data

0x201030: 48 69 20 ... ; "Hi Reassemblr"

; ...

Contents of section .bss

0x201040: 00 00 00 00 ...

(c) Disassembled PIE binary code.

Figure 3: Example describing a symbolization challenge.

Definition 2 (False Negatives). Given αc and αr =
Reasm(Asm(αc)), Reasm has a false-negative error if and only

if there exist m and n such that




Addr(Code(αc)[m]) = Addr(Code(αr)[n])
∧ Code(αc)[m].disp 6= null

∧ Code(αr)[n].disp= null





∨





Addr(Code(αc)[m]) = Addr(Code(αr)[n])
∧ Code(αc)[m].imm 6= null

∧ Code(αr)[n].imm= null





∨





Addr(Data(αc)[m]) = Addr(Data(αr)[n])
∧ Data(αc)[m].value 6= null

∧ Data(αr)[n].value= null





.

Similarly, we say there is a False-Positive (FP) error when the

reassembler recovered a wrong relocatable expression from

the given binary β = Asm(αc).

Definition 3 (False Positives). Given αc and αr =
Reasm(Asm(αc)), Reasm has a false-positive error if and only

if there exist m and n such that




Addr(Code(αc)[m]) = Addr(Code(αr)[n])
∧ Code(αc)[m].disp 6= Code(αr)[n].disp
∧ Code(αr)[n].disp 6= null





∨





Addr(Code(αc)[m]) = Addr(Code(αr)[n])
∧ Code(αc)[m].imm 6= Code(αr)[n].imm
∧ Code(αr)[n].imm 6= null





∨





Addr(Data(αc)[m]) = Addr(Data(αr)[n])
∧ Data(αc)[m].value 6= Data(αr)[n].value
∧ Code(αr)[n].value 6= null





.



Table 2: Categorization of symbolization errors.

ID
Relocatable Expression in αc Observable

F
P

/F
N

Ex.

Syntax Semantics Type 32 64 PIE noPIE

E1 Atomic Absolute I ✓ ✓ ✓ ✓
FP §A.1

FN §A.2

E2 Composite Absolute II ✓ ✓ ✓ ✓
FP §A.3

FN §A.4

E3 Atomic PC-rel III ✓ ✓ ✓ ✓
FP §A.5

FN §A.6

E4 Composite PC-rel IV ✗ ✓ ✓ ✓
FP §A.7

FN §A.8

E5 Atomic GOT-rel V ✓ ✗ ✓ ✗
FP §A.9

FN §A.10

E6 Composite GOT-rel VI ✓ ✗ ✓ ✗
FP §A.11

FN §A.12

E7 Composite Lab-rel VII ✓ ✓ ✓ ✗
FP §A.13

FN §A.14

E8 Constant - - ✓ ✓ ✓ ✓ FP §A.15

2.3 Categorization of Symbolization Errors

Recall from §2.2, a symbolization error occurs when there is

a mismatch between two corresponding relocatable expres-

sions (relocexpr) respectively in αc and αr. We can further

categorize symbolization errors based on the properties of the

mismatched relocatable expressions.

Suppose there is a mismatch between two relocatable ex-

pressions ec ∈αc and er ∈αr. We can then classify symboliza-

tion errors into the eight categories based on the type of ec, as

shown in Table 2. In case ec is null, the error is always due to

the false symbolization of a non-relocatable expression. Thus,

we separately consider this case as E8. We further subdivide

each error category based on whether they are a False Positive

(FP) or a False Negative (FN). This gives us a total of fifteen

different error cases, because E8 can only have false positives

by definition. For each of the error categories, we present in

the Appendix an example error case that REASSESSOR found

as indicated by the last column of Table 2. The Observable

column in the table summarizes whether each of the error

types is observed in our benchmark.

3 REASSESSOR Design

This section describes the design and implementation of RE-

ASSESSOR, an automated tool for detecting symbolization

errors defined in §2.3. We start by introducing the overall ar-

chitecture of REASSESSOR and describe the design challenge

of REASSESSOR. We then present the details of each module

and show how we address the challenges. Finally, we discuss

the soundness of our system as well as the implementation

details of REASSESSOR.

Src.

Preprocessing

Compiler

STRIP

Reassembler

.s

CONCAT

REASSESSOR

ADDRMAPPER

ADDRMAPPER

NORMALIZER

NORMALIZER

β
DIFFER

Bugs

β

β′

αc

αr

α′
c

α′
r

α′′
c

α′′
r

Figure 4: REASSESSOR architecture.

3.1 Overview

At a high level, REASSESSOR takes in as input a compiler-

generated assembly file (αc), a binary file (β), and a

reassembler-generated assembly file (αr). It then outputs a

list of symbolization errors found. Figure 4 depicts the overall

architecture of REASSESSOR.

First, there is a preprocessing step that needs to be per-

formed before operating REASSESSOR, which is to run both

a compiler and a reassembler under test to produce a triple

(αc, β, αr). The CONCAT module merges all the assembly

files generated by the compiler into one. The STRIP module

strips off debug symbols from the binary β to get a stripped

binary β′. The stripping process is omitted for some reassem-

blers if they require debugging information to operate, e.g.,

RetroWrite. We further detail the preprocessing step in §3.2.

Next, the ADDRMAPPER module takes in an assembly file

and a non-stripped binary β as input, and returns an annotated

assembly file that provides means to identify the correspond-

ing addresses of the assembly lines. That is, it parses the given

assembly file and maps each line in the assembly file with

a concrete address appeared in the given binary. Given the

triple (αc, β, αr), we run ADDRMAPPER twice with two dif-

ferent inputs: (αc, β) and (αr, β). This way we can obtain

two annotated assembly files: α′
c and α′

r. §3.3 details the de-

sign of ADDRMAPPER. Each of the annotated assembly files

then goes through the NORMALIZER module, which trans-

forms assembly expressions into a canonical form to ease

the comparison. In return, we obtain normalized (and anno-

tated) assembly files: α′′
c and α′′

r . We describe the detailed

implementation in §3.4.

Finally, the DIFFER module takes in the two normalized

assembly files (α′′
c and α′′

r ) as input, and returns a list of

symbolization errors found. In our implementation, DIFFER

also reports reassembly bugs that are not a symbolization

error. For example, it can also detect reassembly bugs that are

due to erroneous disassembly. §3.5 details its design.

Challenges. There are several technical challenges in de-

signing REASSESSOR. First, obtaining assembly files during

compilation is not always straightforward due to complex



source file structures (§3.2). Second, reassemblers can pro-

duce grammatically wrong assembly files as output due to

implementation errors (§3.3.1). Third, there can be multiple

matching assembly lines for a single disassembled instruction

(§3.3.2). Finally, not every assembly line has an associated

debugging symbol (§3.3.3).

3.2 Generating Assembly Files

Most modern compilers provide a command line switch (such

as -save-temps) that forces the compilers to preserve all the

intermediate files including assembly files generated during a

compilation process. Although it seems trivial, obtaining as-

sembly files from a compiler is challenging due to potentially

complex source structures.

Suppose there are two programs that share a source file

f , which contains #if directives to provide two or more dif-

ferent implementations of the same function in f . When the

two programs define different macros, we will obtain two

different versions of assembly files from f for each program.

Unfortunately, those two assembly files share the same path

because they are from the same source file. Thus, if we com-

pile the package with the make command, one assembly file

will overwrite the other, leaving only one assembly file. We

observed this problem in the GNU coreutils package, and

Clang was not able to separate assembly files in this case.

To handle the aforementioned challenge, we leverage

loggedfs [31] while building a project. It allows us to check

if any assembly file has been overwritten by the compiler.

When we identify such cases during compilation, we manu-

ally fixed the corresponding Makefile(s) to retrieve assembly

file(s).

3.3 Address Mapping

Recall that ADDRMAPPER associates concrete addresses in β
with assembly lines in α to produce α′, which is an annotated

assembly file that has a mapping from each assembly line to

its address. This is to implement the Addr function defined

in §2.2. There are two design requirements that need to be

satisfied for ADDRMAPPER. First, our tool should be resilient

to parsing errors because reassemblers often produce gram-

matically incorrect assembly files (§3.3.1). Second, our tool

should be able to identify concrete addresses for assembly

lines located in both code (§3.3.2) and data sections (§3.3.3).

3.3.1 Error-Resilient Parsing

Reassemblers sometimes produce grammatically wrong as-

sembly files due to implementation errors. If we simply regard

such cases as a bug, we will not be able to figure out the actual

symbolization problems thwarting the reassembly process.

During the course of our study, we found that Ramblr,

RetroWrite, and Ddisasm can generate invalid assembly files

including ones with (1) duplicate label definitions, and (2)

references to undefined labels. Therefore, we implemented

our own assembly parser, which can disregard such parsing

errors and keep consuming the next assembly lines.

3.3.2 Calculating Code Addresses

Compilers often produce duplicate function bodies in dif-

ferent assembly files, but only one of them will be selected

when emitting a binary. Furthermore, each duplicate copy

may have slightly different instructions due to the use of C

macros. Therefore, ADDRMAPPER should be able to identify

the right function in α for a function in β. We handle this

challenge by comparing instruction sequences.

Specifically, we associate the address in β with every as-

sembly instruction in α in the following three steps. First, we

enumerate every function in β with the help of the debugging

information. Second, for each function, we find all possible

functions in α. Third, for each function found in the previ-

ous step, we identify a matching function in β by comparing

their instructions. We then assign concrete addresses to the

function and its instructions only when there is a match.

While matching functions, we carefully consider compiler-

generated no-op instructions, which exist only in β, but

not in α. Such no-op instructions have many different

forms, e.g., “nop”, “nop DWORD ptr [eax+eax*1+0x0]”,

“lea esi, [esi]”, and so forth. REASSESSOR regards ev-

ery instruction that does not change the CPU state other than

the PC register as a “semantic no-op instruction”, and ignores

them to correctly match every function.

3.3.3 Calculating Data Addresses

Unlike instruction addresses, not every data value in a binary

has a debug symbol attached to it. For example, compiler-

generated data values, such as jump table entries, have no

debug symbol. Therefore, one cannot simply adopt the same

method we used for obtaining code addresses.

At a high level, ADDRMAPPER uses two different methods

to compute data addresses: (1) for compiler-generated assem-

bly files, it examines local symbols generated by the compiler;

and (2) for reassembly-generated assembly files, it leverages

tool-specific metadata generated by each reassembler.

Data Addresses for αc. Compilers assign a local symbol to

compiler-generated data values, which is easily identifiable

as they are always prefixed by a dot (.) symbol. Furthermore,

we can infer data addresses by examining how local symbols

are referenced in the assembly file (αc) as illustrated in Fig-

ure 5. First, it enumerates all possible local symbols (includ-

ing the symbol .Lswitch.table.convert_move). Next, for

each local symbol, it searches for an instruction that refer-

ences the symbol. Finally, ADDRMAPPER locates the cor-

responding instruction in β with the debugging informa-



; code section

.Ltmp516:

mov eax, [eax * 4 + .Lswitch.table.convert_move]

jmp .LBB8_169

...

; data section

.Lswitch.table.convert_move:

.long libfunc_table

.long libfunc_table+4

.long libfunc_table+8

...

Compiler-generated assembly αc

...

0x80d226e: mov eax, [eax * 4 + 0x823800c]

...

Corresponding binary β

1©

4©

2©

3©

Figure 5: Calculating data addresses from local symbols.

tion. We note that the corresponding displacement value of

.Lswitch.table.convert_move is 0x823800c. Hence, we

realize that the data line 4© has the value 0x823800c.

Data Addresses for αr. Any data values that are examined

by the reassembler are explicitly assigned with a label. Exist-

ing reassemblers that we studied always produce an assem-

bly label with enough metadata attached to it for debugging

purposes. For example, every data value in αr generated by

Ramblr has an explicit annotation showing at which address

the data value is located. Thus, ADDRMAPPER parses such

meta information to construct a mapping from a data line to

the binary address.

3.4 Assembly Normalization

Recall from §2.2, our definition of symbolization error is

based on the assumption that assembly files are syntactically

normalized. In our implementation, NORMALIZER converts

an annotated assembly file α′ into another annotated assembly

file α′′, which contains only canonical assembly expressions

making a comparison between assembly files straightforward.

Specifically, NORMALIZER first parses an assembly file

written in either the AT&T syntax or the Intel syntax into a

data structure representing the Abstract Syntax Tree (AST)

of the assembly file. It then converts labels in the AST to

have a normalized name with the corresponding address (as

described in §2.2). Next, NORMALIZER breaks constant data

values into a sequence of byte values. The modified ASTs

will then be used as input to the DIFFER module.

3.5 Assembly Diffing

The last step of REASSESSOR is DIFFER, which compares two

annotated assembly files α′′
c and α′′

r to find potential errors in

the reassembler under test, i.e., Reasm. Specifically, DIFFER

compares the ASTs of the assembly files, and sees if there

is any mismatch. Note DIFFER ignores compiler-generated

functions and sections for diffing. For every mismatch found,

it examines the mismatched expression in both α′′
c and α′′

r to

decide the error type, and reports the error. As an example,

consider the error case in §A.2 where there is a mismatch

in the second operand of the cmp instructions. In this case,

REASSESSOR will realize that the atomic relocatable expres-

sion L759ab0 is not symbolized by the reassembler under

test. Since the expression represents an absolute address, it

is a Type I relocatable expression, and this is a false-negative

error. Therefore, REASSESSOR will report this error as an E1

false-negative error according to Table 2.

In our current implementation, REASSESSOR detects not

only symbolization errors, but also disassembly errors. It is

indeed straightforward to identify disassembly errors by com-

paring two AST expressions. Our study confirms that current

reassemblers suffer from disassembly errors, too (§5.3.2).

3.6 Soundness of REASSESSOR

Any symbolization errors found by REASSESSOR can poten-

tially break the program semantics as long as the erroneous

program point is reachable. For instance, if there is a sym-

bolization error in an unreachable instruction, then the error

will give no harm to the program behavior. However, we be-

lieve such unsound cases are rare in practice due to various

compiler optimization techniques, such as dead code elimina-

tion. It is beyond the scope of this paper to verify whether a

program point is reachable or not.

3.7 Implementation

We have implemented REASSESSOR in approximately 3.1K

SLoC of Python: 0.3K SLoC for the preprocessing module,

2.8K SLoC for the main modules (ADDRMAPPER, NOR-

MALIZER, and DIFFER) of REASSESSOR. We leveraged Cap-

stone [67] for disassembling binaries, and pyelftools [7] for

parsing ELF headers and DWARF debugging information.

4 Building Benchmark

To test reassemblers with REASSESSOR, one needs to have a

set of triples (αc, β, αr) that can reflect various code and data

patterns. Thus, we create our own benchmark with various

combinations of compilers, linkers, target ISAs, and compiler

options. Our benchmark is created by compiling three source

packages totaling 153 executable programs as follows.

• GNU coreutils (v8.30): 107 executable programs.

• GNU binutils (v2.31.1): 15 executable programs.

• SPEC CPU 2006 (v1.1): 31 executable programs.



We consider all possible combinations of the following

configurations in order to produce assembly files and binaries

with diverse assembly expression patterns.

• ISA: x86 and x86-64 (= 2)

• Compilers: GCC v7.5.0 and Clang v12.0 (= 2)

• Linkers: GNU ld v2.30 and GNU gold v1.15 (= 2)

• PIE/non-PIE: produce a PIE or a non-PIE (= 2)

• Optimization: O0, O1, O2, O3, Os, and Ofast (= 6)

For each executable program, we can generate 96 (= 2×2×

2×2×6) different binaries, which sums up to 14,688 binaries

(= 96× 153) in total. We compiled all these programs with

the -save-temps option in order to obtain assembly files

during compilation. Whenever we detect overwritten files

with loggedfs (as discussed in §3.2), we manually modified

Makefiles to preserve all the assembly files. We also enabled

the -g option to produce binaries with debugging information.

For each binary, we made a stripped copy by running the

strip command. Hence, our benchmark includes a total of

14,688 not-stripped binaries and 14,688 stripped binaries.

5 Evaluation

We now evaluate existing reassemblers with REASSESSOR to

identify potential reassembly challenges and their implication.

In particular, we address the following research questions.

RQ1. What are the characteristics of relocatable expressions

in real-world binaries? Are there any reassembly tech-

niques that can suffer due to such characteristics? (§5.2)

RQ2. Can the current state-of-the-art reassemblers produce

correct assembly files? How accurate are they? (§5.3)

RQ3. How do the symbolization errors found by REASSES-

SOR look? Can we get useful insights from them? (§5.4)

RQ4. Can REASSESSOR improve an existing state-of-the-art

reassembler? (§5.5)

5.1 Experimental Setup

With REASSESSOR, we tested the following three state-of-

the-art reassemblers: Ramblr (commit 64d1049, Apr. 2022),

RetroWrite (commit 613562, Apr. 2022), and Ddisasm v1.5.3

(docker image digests a803c9, Apr. 2022). We first ran each

tool with the binaries in our benchmark (§4), and collected

reassembled assembly files. Next, we constructed a list of

triples (αc, β, αr) with the generated assembly files, and ran

REASSESSOR on each of the triples to discover errors in

the reassemblers. Note that each tool supports different sets

of binaries: Ramblr only works with non-PIE binaries and

RetroWrite only works with x86-64 PIE binaries. Thus, we

used only a subset of the binaries for those tools: 7,344 bina-

ries and 3,672 for Ramblr and RetroWrite, respectively. We

also provided non-stripped binaries as input to RetroWrite

because it requires debugging information to operate.

Type I + II

7.588%

Type III + IV 85.512%

Type VII

6.9%

Figure 6: Proportion of each relocatable expression type for

x86-64 PIE assembly files.

5.2 Statistics about Relocatable Expressions

With our custom assembly parser (§3.3.1), we examined every

relocatable expression of the assembly files in our benchmark

in order to understand their statistical characteristics. In par-

ticular, we answer the following questions: (1) How precise

can code pointer heuristics be? (2) Do x86-64 PIE binaries

have any hard-to-recover relocatable expressions? (3) How

much proportion of composite relocatable expressions are

there in our benchmark?

5.2.1 Reflection on Code Pointer Heuristics

Existing code pointer heuristics, such as the one used by

Uroboros [89], assume that code pointers can only point to

a function entry point. We used REASSESSOR to analyze all

the relocatable expressions found in our benchmark to check

if there is a code pointer that refers to a location other than

a function entry point. As a result, we found 394 such ex-

pressions (excluding jump table entries) from 0.65% of the

binaries in our benchmark. We further analyzed those assem-

bly files to understand their uses, and found that they were

mainly due to goto statements used in the SPEC benchmark.

Thus, we conclude that existing code pointer heuristics do not

work well with ill-structured programs with many gotos.

5.2.2 Breaking the Myth of x86-64 PIE Reassembly

Recall that recent reassemblers, such as RetroWrite [26], Egal-

ito [95], and LLR [64], focus on x86-64 PIEs due to the eas-

iness of identifying must-symbolize targets. In case there is

an instruction that uses absolute addressing, the compiler will

make a relocation entry in the resulting binary so that the ref-

erence can always be relocated at link time. For these reasons,

some researchers have believed that x86-64 PIE reassembly

can be sound without precise CFG recovery. But is this true?

Are there any relocatable expressions that cannot be identified

by PC-relative instructions or with the relocation table?

We answer this by analyzing the x86-64 PIE binaries (3,672

binaries in total) in our benchmark and all the corresponding

compiler-generated assembly files. Specifically, we examined



1 int output=0;

2 const int bar[]={-0x180, -0x190, -0x1a0, -0x1b0};

3 void foo(unsigned int input) {

4 int *p = (int *)bar - 3;

5 switch(input){

6 case 0: output = bar[0]; break;

7 case 1: output = bar[1]; break;

8 case 2: output = bar[2]; break;

9 case 3: output = bar[3]; break;

10 default:

11 if(input < 7) output = p[input]; break;

12 }

13 printf("In:%x, Out:%x\n", input, output);

14 }

(a) Source code in C.

.section .text

foo:

;...

lea rax, [rip+.LJTI0_0]

;...

add rdx, rax

jmp rdx

;...

.section .rodata

.LJTI0_0:

.long .LBB0_1-.LJTI0_0

.long .LBB0_2-.LJTI0_0

.long .LBB0_3-.LJTI0_0

.long .LBB0_4-.LJTI0_0

bar:

.long 0xfffffe80 ; -0x180

.long 0xfffffe70 ; -0x190

.long 0xfffffe60 ; -0x1a0

.long 0xfffffe50 ; -0x1b0

(b) x86-64 assembly (αc).

.section .text

foo:

;...

0x69c: lea rax, [rip+0x18d] ; 0x830

;...

0x6ab: add rdx, rax

0x6ae: jmp rdx

;...

.section .rodata

; This part corresponds to .LJTI0_0

0x830: 80 fe ff ff

0x834: 91 fe ff ff

0x838: a2 fe ff ff

0x83c: b3 fe ff ff

; This part corresponds to bar

0x840: 80 fe ff ff

0x844: 70 fe ff ff

0x848: 60 fe ff ff

0x84c: 50 fe ff ff

(c) Disassembled β.

Figure 7: Example illustrating the problem of label-relative

relocatable expressions in x86-64 PIEs.

every relocatable expression in the assembly files to measure

the proportion of each relocatable expression type as illus-

trated in Figure 6. As expected, most relocatable expressions

in x86-64 PIEs are used for PC-relative addresses (Type III

and Type IV), and none of the expressions is used for GOT-

relative addresses (no Type V nor Type VI).

More importantly, though, we found that 6.9% of x86-64

PIEs use label-relative (Type VII) relocatable expressions,

and all of them are located in a data section representing a

jump table entry. This implies that precise CFG recovery is

indeed a key requirement for reassembly even for x86-64 PIEs

because one cannot recover the correct expressions without

precise CFGs.

To understand why CFG recovery matters, let us consider a

toy example in Figure 7 we created. Figure 7b and Figure 7c

respectively show αc and β obtained by compiling the source

code with Clang to get a x86-64 PIE binary. Note there is a

jump table at .LJTI0_0 for the switch statement where each

entry is in the form of “label1 − label2”, i.e., Type VII.

One may analyze the lea instruction as well as the following

jmp instruction to realize that the data value at 0x830 is the

start address of the jump table. However, the main challenge

is to figure out where the jump table ends: Knowing the
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Figure 8: Proportion of composite relocatable expressions

over different compiler optimization options.

precise jump table bounds implies complete CFG recovery. In

this example, the global array (bar) immediately follows the

jump table, and all the reassemblers that we tested failed to

identify the correct jump table boundary, causing it to create

a malfunctioning binary.

This result highlights the importance of CFG recovery even

for x86-64 PIEs. Moreover, RetroWrite and Ddisasm had E7

symbolization errors for 3.76% of the x86-64 PIE binaries in

our benchmark. Thus, we conclude that precise CFG recovery

is a necessary condition for sound reassembly of x86-64 PIEs.

5.2.3 Significance of Composite Expressions

Recall from §2.2, recovering composite relocatable expres-

sions is challenging as we cannot identify the original ref-

erence unless we understand the entire program semantics.

Indeed, identifying the origin of a pointer reduces to the tradi-

tional variable recovery problem [4,49,73]. Thus, it is natural

to ask how many of the relocatable expressions are composite,

and what is their significance.

We answer this question by measuring the proportion of

composite and atomic relocatable expressions in our bench-

mark. First, there are a total of 266,879,967 relocatable ex-

pressions in our benchmark, and 6.28 % of them are indeed

composite. Furthermore, 97.4% of the binaries in our bench-

mark contain at least one composite relocatable expression.

Unfortunately, correctly symbolizing composite relocatable

expressions is difficult: only 34.6% of the expressions were

correctly symbolized.

Figure 8 describes the proportion of composite relocat-

able expressions for different sets of assembly files compiled

with different compiler optimization options. It has turned

out that we get more composite relocatable expressions as

we apply more aggressive optimizations. The Ofast option,

which is the most aggressive one, produced the most number

of composite expressions (6.83%). Thus, handling composite

relocatable expressions becomes more difficult when dealing

with highly optimized binaries.

The problem can only become worse when the symboliza-

tion target, i.e., a displacement or an immediate in the binary,

does not fall into a predefined memory region as indicated

by [88]. We found that 1.82% of the binaries in our bench-

mark have at least one composite expression pointing outside

of valid memory ranges. We further discuss in §5.4.3 why



Table 3: Reassembly success rates for different binary sets.

Ramblr RetroWrite Ddisasm

Ran Comp.* Ran Comp. Ran Comp.

G
C

C

coreutils 100% 95.1% 100% 100% 100% 99.4%

binutils 97.5% 64.7% 100% 56.7% 95.0% 84.2%

SPEC 71.6% 44.8% 96.8% 90.1% 99.2% 86.8%

C
la

n
g coreutils 100% 99.2% 100% 99.1% 100% 98.3%

binutils 97.5% 82.2% 100% 100% 96.5% 77.2%

SPEC 73.7% 45.6% 93.5% 87.1% 97.5% 83.5%

Total succ. rate 94.2% 84.3% 99.3% 95.2% 99.2% 94.3%

Total succ. bins. 6,921 6,191 3,648 3,497 14,575 13,850

Total tried bins. 7,344 7,344 3,672 3,672 14,688 14,688

* Comp. means the produced assembly file compiled successfully.

existing heuristics suggested by Ddisasm and Ramblr are not

enough to handle such cases.

5.3 Reassembly Errors

We now analyze the reassembly errors that REASSESSOR

found from the three state-of-the-art reassemblers. While

running our experiments, we found that not every binary in

our benchmark is reassemblable by the reassemblers, and not

every reassembled assembly file can be compiled. Table 3

summarizes the results. The “Ran” columns show the success

rates of each reassembler execution, and the “Comp.” columns

show the success rates of each compilation attempt.

First, Ramblr, RetroWrite, and Ddisasm were able to pro-

duce an assembly file for 94.2%, 99.3%, and 99.2% of the

binaries, respectively. The tools did not produce assembly

files due to various runtime errors. Among the generated as-

sembly files, 91.6% of them were compilable. Even for those

files that did not compile, we were able to analyze their re-

assembly errors using our error-resilient parser described in

§3.3.1. These results show that reassembly is still not a mature

field and there is plenty of room for improvement.

5.3.1 Symbolization Errors

For all the assembly files generated by each tool, we ran RE-

ASSESSOR to identify symbolization errors. The second row

of Table 4 respectively shows the numbers of reassembled

binaries and the numbers of successfully reassembled bina-

ries. The success rate was considerably low, which means

that those tools had at least one symbolization error for most

of each binary. Although we did not verify the reachability

of those errors, this result indicates that the symbolization

challenge is still largely unsolved.

The third row of Table 4 presents the numbers of symbol-

ization errors found for each error type. Ramblr does not have

E5–E7 errors—marked with a dash—because it only handles

non-PIE binaries while Type V–VII relocatable expressions

Table 4: Numbers of reassembly errors REASSESSOR found

for each tool.

Ramblr RetroWrite Ddisasm

# of Bins Reassembled 6,921 3,648 14,575

# of Bins Succeeded 200 110 221

S
y

m
b

o
li

za
ti

o
n

E
rr

o
rs

E1

# of TPs 28,395,297 4,137,122 41,770,473

# of FNs 94,005 491,294 3,815,817

# of FPs 46,144 0 54

E2

# of TPs 52 44,976 192,764

# of FNs 423 774 2,707,280

# of FPs 3,879,115 43,920 2,685,997

E3

# of TPs 64,326,100 53,917,919 177,186,331

# of FNs 371 76 3,318,312

# of FPs 29 52,370 33

E4

# of TPs 4 3,614 4,735

# of FNs 0 0 2,415,954

# of FPs 1,405,352 2,503,910 2,283,903

E5

# of TPs *- - 8,102,765

# of FNs - - 3,464,715

# of FPs - - 104

E6

# of TPs - - 70

# of FNs - - 58,846

# of FPs - - 833,510

E7

# of TPs - 4,576,136 5,195,204

# of FNs - 280 128,954

# of FPs - 0 126

E8 # of FPs 705,318 0 527,340

Disasm

Errors

# of TPs 386,625,782 264,877,436 1,078,771,523

# of FNs 4,235 0 1,524

# of FPs 2,442 0 317

* The dash (-) means that the tool does not support corresponding binaries.

are only found in PIE binaries. RetroWrite does not have E5–

E6 errors because it only supports x86-64 PIE binaries while

Type V and type VI relocatable expressions are only found in

x86 PIE binaries. We observe that none of the reassemblers

is free from symbolization errors. As we will discuss in §5.4,

we were able to discover various code and data patterns that

previous reassemblers do not handle.

It is important to note that the numbers in Table 4 indicate

the numbers of symbolization errors found by reassembling

binaries with each tool in our benchmark, but not the numbers

of errors of each tool. That is, one may significantly reduce the

numbers by fixing a heuristic or handling a specific error case.

We indeed show that enhancing the current state-of-the-art

tool is feasible by carefully analyzing the results (§5.5).

Since the reassemblers we tested support different sets of

binaries in our benchmark, we used two different subsets of

our benchmark to fairly compare the relative ability of those

tools in terms of symbolization accuracy. Figure 9 illustrates

two experimental results: Figure 9a compares Ddisasm and

RetroWrite on x86-64 PIE binaries, and Figure 9b compares

Ddisasm and Ramblr on non-PIE binaries.
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Figure 9: Percentage of reassembled binaries that returned at

least one symbolization error for each error type.

Overall, all the tools had similar performance except for E1,

E3, and E8. RetroWrite and Ramblr had significantly more

E1 and E3 errors compared to Ddisasm because they did not

correctly handle data sections. For example, we found that

RetroWrite does not handle relocation entries for read-only

global variables. By not symbolizing such global variables,

RetroWrite produces both E1 and E3 errors. Ramblr had

more E8 errors compared to Ddisasm because it aggressively

symbolizes numbers, e.g., it symbolizes unaligned data [88].

To sum up, Ddisasm shows the least number of error cases

compared to the other tools. Regardless, there is still ample

room for improvement in the field.

5.3.2 Disassembly Errors

Recall from §3.5, REASSESSOR can also find disassem-

bly errors during the reassembly process. It is not surpris-

ing to observe disassembly errors from existing reassem-

blers because disassembling binaries is challenging by it-

self [2, 10, 43, 62, 74]. The bottom part of Table 4 shows the

number of disassembly errors found from each reassembler.

Note that RetroWrite leverages debugging information to dis-

assemble binaries, so there is no disassembly error. The other

tools leverage various techniques to improve the accuracy of

disassembly, but our evaluation shows that they still suffer

from disassembly errors in terms of both FPs and FNs.

5.4 Dissecting Reassembly Errors

We further analyzed reassembly error cases REASSESSOR

found to extract useful insights. In particular, we analyzed

common patterns found in our bug database and manually

analyzed several of those patterns to discover interesting ones.

This section presents our findings as summarized below.

• There are previously unknown FN patterns. (§5.4.1)

• There are previously unknown FP patterns. (§5.4.2)

• Data addresses can vary with different linkers. (§5.4.3)

5.4.1 False Negatives

Previous work showed that false negative errors are mostly

due to composite relocatable expressions (e.g., §6.2 of [32]),

but how often can we find false negatives on atomic relocat-

able expressions? To answer this question, we analyzed all

the error types with atomic relocatable expressions (E1, E3,

and E5).

Surprisingly, we found numerous FNs with atomic relocat-

able expressions in 34.1% of the reassembled assembly files

in our benchmark. For example, there is an instruction “lea

ecx, [ebx + L60c7@GOTOFF]” from the assembly file gen-

erated for mkdir of coreutils. This assembly line causes a FN

error for Ddisasm, because the displacement is a GOT-based

offset, and Ddisasm failed to correctly analyze it.

5.4.2 False Positives

Previous research focuses on identifying and symbolizing

composite relocatable expressions, but are there any cases

where an atomic relocatable expression is falsely regarded

as a composite expression, thereby causing a FP? For exam-

ple, can the base pointer reattribution technique proposed by

Ramblr [88] cause any FPs?

We found that such FPs are prevalent in practice: 5.7% of

the reassembled assembly files in our benchmark had such

an error. As an example, given the instruction “lea r12,

[rip+L14ef60]” found in strings of coreutils, RetroWrite

symbolized the displacement as “L1110e0+0x3de80”.

We also found that a symbolization error can be cascaded

to lead to another symbolization error. For example, the im-

mediate value in “mov edx, L4ec6fa” is falsely symbolized

by Ddisasm as “mov edx, L4ec6f8+2” because there exists

an erroneous symbol at 0x4ec6f8 referring to a quad data

value. This example signifies the complexity of symbolization

errors found in real-world binaries.

Furthermore, we observed FP cases where symbolized la-

bels (in αr) have the same form as in the original (in αc),

while only the label values are misidentified. As an example,

§A.13 presents a case where the labels in αr and αc do not

match, while the reassembler correctly analyzed it as a Type

VII relocatable expression. We found such cases in 1.9% of

the reassembled assembly files.

5.4.3 Varying Data Addresses

During the course of our study, we found that linkers can also

affect the shape of symbolization errors. Figure 10 describes

an error case we found from two different binaries compiled

with the same compiler, but with two different linkers: β1 from

gold and β2 from ld. Note that the compiler-generated assem-

bly file (αc) has a composite relocatable expression argname

+ 0xa0. The resulting two binaries, even though they are from

the same assembly file, have different memory layouts. As

a result, the memory operand of the lea instruction can be

symbolized in totally different ways for each binary. When we

reassemble those two binaries with Ddisasm, the lea instruc-

tion of α1
r points to a data section, whereas the lea instruction



char *argname[] = {...}; // global array of 160 bytes

...

SV* argspec_compile(SV* src, PSTATE* p_state) {

...

for (arg_name = argname;

arg_name < argname + sizeof(argname);

++arg_name) {

Src

...

lea rax, [rip+argname+0xa0]

...

αc

Compile

...

0xdb9b9: lea rax, [rip+0x3a600] ; 0x115fc0

...
β1

...

lea rax, [rip+L115fc0]

...
α1

r

...

0xdb959: lea rax, [rip+0x237660] ; 0x312fc0

...
β2

...

lea rax, [rip+stdout]

...
α2

r

Link with gold

Link with ld

Reassemble with Ddisasm

Reassemble with Ddisasm

Figure 10: Error case presenting the importance of recovering

composite expressions.

of α2
r refers to a symbol stdout in the .bss section.

This example highlights the fact that a linker can largely

change the memory layout of the resulting binary, and like-

wise impact the reassembly performance. Therefore, it is cru-

cial for reassemblers to employ memory-layout-agnostic tech-

niques and heuristics.

5.5 Enhancement to Existing Reassemblers

Now that we have found plentiful symbolization errors and

several previously unknown FN/FP patterns, we further verify

our insights by considering ways to enhance the current state

of the art. First, we created a patch for RetroWrite to resolve

E7. Second, we analyzed how a known heuristic employed by

Uroboros could help improve the performance of other tools.

5.5.1 Patching RetroWrite

Recall that E7 errors are due to incorrectly recovered jump

table entries. RetroWrite employs a pattern-based heuristic

to symbolize jump table entries where only those entries

that fall within a boundary of the corresponding function

are considered valid. We found there are exceptional cases

where a dummy (unreachable) jump table entry points to the

end of a function. Such an entry will never be referenced,

but it points to an address beyond the function boundary.

Therefore, RetroWrite falsely computes the boundary of the

jump table, and thus, misses out several jump table entries

including reachable ones.

We created a patch as well as a pull request2 that explicitly

handles such unreachable entries. We compared the numbers

2https://github.com/HexHive/retrowrite/pull/36

Table 5: Comparison of symbolization errors before and after

applying our patch.

RetroWrite RetroWrite (patched)

# of Bins Reassembled 3,648 3,648

E7

# of TPs 4,576,136 4,573,412

# of FPs 0 0

# of FNs 280 4

of E7 errors before and after applying the patch. As a result,

we were able to reduce 98.6% of E7 errors as Table 5 indicates.

This result highlights that our study can directly benefit the

current state-of-the-art reassemblers. We leave it as future

work to further improve the existing reassembly tools by

considering other types of symbolization errors.

5.5.2 Data Section Heuristic

Uroboros [89] mitigates symbolization errors for non-PIE

binaries by fixing the layout of data sections. That is, it al-

ways assumes that data sections have the same (fixed) mem-

ory addresses both before and after reassembling the binary.

Although this technique fundamentally limits the ability of

reassemblers by preventing data instrumentation, it allows

robust code instrumentation without having to distinguish

between number literals and pointers.

Can this heuristic be adopted to the tools that we tested to

mitigate the symbolization challenge? To answer this ques-

tion, we measured an empirical lower bound of the number

of reparable symbolization errors when preventing data in-

strumentation. We chose this method because those tools do

not support fixing data layouts of reassembled binaries as

in Uroboros. Specifically, we discounted symbolization er-

rors that satisfy the following conditions: (1) the error is a

false positive where two relocatable expressions ec ∈ αc and

er ∈ αr mismatch; (2) the corresponding instructions have the

same opcode and operands except for the relocatable expres-

sions ec and er; (3) ec and er, although syntactically different,

evaluate to the same address; and (4) both ec and er have a

single label and the labels belong to the same section. With

the above criteria, we were able to reduce at least 43.25%

of the symbolization errors from our benchmark. Thus, we

believe fixing the layout of data sections can be a practical

heuristic for reassembly especially when data instrumentation

is not required.

6 Discussion and Future Work

Reassembly should be in accord with the development of

CFG recovery techniques. Although recent research on

x86-64 PIEs shows its potential, our study in §5.2.2 reveals

that sound reassembly on x86-64 PIEs also requires precise

CFG recovery.

https://github.com/HexHive/retrowrite/pull/36


Reassembly should evolve with variable recovery tech-

niques. Recall from §5.2.3, composite relocatable expres-

sions are widely used in real-world binaries, and previous

research suggests various heuristics to handle it. However,

our study in §5.4.3 shows that those heuristics suffer when the

data layout changes. This can be handled by fixing the data

layout as in Egalito [95], but it requires full control over the

linker and the code emission processes. To leverage existing

compiler tool-chains, one needs to recover variables used in

composite relocatable expressions. Thus, combining existing

variable recovery techniques with reassembly is an interesting

direction for future work.

We need to support IR-based reassembler/recompiler.

Currently, REASSESSOR only supports disassembly-based

reassemblers, but not IR-based reassemblers such as Egalito.

To support such a system, one needs to have a translator from

IR to disassembly, and it can be promising future work.

7 Related Work

Reassembly is a recent branch of static binary rewriting,

which is a technique to modify existing executables while

seamlessly injecting instrumentation into them. Due to its

unique capability to modify binaries without source code,

it has been widely studied for diverse purposes, such as

performance optimization [53, 59, 75, 86], binary harden-

ing [18–20, 29, 41, 46, 47, 61, 62, 64, 84, 87, 92, 98, 101, 102],

and binary code reuse [12, 24, 45, 97]. For a complete review

of binary rewriting, we refer to the recent survey [94].

One of the key challenges to static binary rewriting is how

to statically identify the cross-references in the target binary

and update those references once instrumentation has been

added. Since the references in the binary will be shifted rel-

ative to the instrumentation injected into the code, all cross-

references in the binary will need to be recalculated. The

problem, however, is that these references are not immedi-

ately clear as they are computed at runtime making static

binary rewriting generally infeasible. Despite this challenge,

static binary rewriting has gained popularity due to the lower

overhead it incurs compared to other dynamic instrumentation

techniques [6, 11, 50, 55, 56]. There are four ways that this

challenge can be approached.

Compiler-assisted Static Rewriters. One method to cir-

cumvent the challenge of rewriting binaries is to utilize the

assistance of compilers and debugging symbols. For example,

ATOM [30], Plto [75], Vulcan [28], Diablo [86], Pebil [48],

CCR [46], and Bolt [59] are in this category. There are several

binary hardening [29, 40], monitoring [68], profiling [69, 82],

and optimization [38, 81, 96] solutions built on top of these

tools. However, none of these tools handles stripped binaries.

Patch-based Static Rewriters. Some rewriters tackle the

challenge by preserving the layout of the original binary

while patching only a part of the overall code. Since the

layout is preserved, no changes are needed to fix refer-

ences. Instead, the target instruction is replaced with a small

trampoline which will redirect the flow to the instrumented

code. This approach is also referred to as a trampoline-

based approach. Detour [35], DynInst [8], Bistro [24], and

E9Patch [27] are in this category, and there are many security

solutions that leverage this method: code reuse [42], taint

tracking [15], hardening [16–18, 62, 85], hot patching [9],

monitoring [13, 80], performance profiling [3, 37], software

testing [34], fuzzing [14, 51, 54], and obfuscations [70]. How-

ever, these tools do not support fine-grained instrumentation

on the instruction level as the size of the target instruction can

be smaller than the size of the branch instruction to patch.

Table-based Static Rewriters. Rewriters in this category

make a duplicate copy of the target binary and maintain an

address translation table mapping the original address to a

new address in the copy. The copy is then instrumented to

redirect pointers to the new address in the table whenever

they are dereferenced by the original program. REINS [93],

PSI [100], Multiverse [5], and µSBS [71] are in this category.

Several binary hardening solutions [66, 90, 92, 99] are built

on top of these tools. Although this approach does support

fine-grained instrumentation, it suffers from a high time and

space overhead compared to the patch-based approach due to

the additional table look-ups.

Reassembly-based Static Rewriters. Recent research has

introduced reassembly-based approaches. Reassemblers at-

tempt to resolve the challenge by creating a relocatable rep-

resentation from a binary. In this paper, we use the term “re-

assembly” to mean a fully static binary translation technique

that does not rely on any runtime support through symbol-

ization. Pang et al. [60] examined symbolization algorithms

used in several binary analysis tools including reassemblers,

but they did not investigate distinct types of symbolization

errors, and did not provide a systematic way to discover them.

8 Conclusion

In this paper, we showed with our formal framework and an

automated system that reassembly is a challenging problem

even for x86-64 PIEs. Particularly, we presented REASSES-

SOR, the first automated system for detecting reassembly er-

rors. Through REASSESSOR, we analyzed three existing re-

assemblers to find various reassembly errors with previously

unknown patterns, which can be later used to improve the

current state-of-the-art.
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A Symbolization Error Cases.

This section showcases symbolization errors found by RE-

ASSESSOR for each error type. Labels in the assembly instruc-

tions are normalized based on the rules described in §3.4.

A.1 E1 False Positive

mov esi, L61122a (αc)

53b803: mov rsi, 0x61122a (β)

mov esi, OFFSET L611228+2 (αr)

This error case is found with Ddisasm when reassembling

x86-64 as-new binary, which was compiled by GCC and

ld with -nopie and -O0 options. Ddisasm misidentified the

atomic label L61122a as a composite relocatable expression.

A.2 E1 False Negative

cmp rbx, L4e47d0 (αc)

0x40b5cb: cmp rbx, 0x4e47d0 ; 0x4e47d0 is in .bss (β)

cmp rbx, 0x4e47d0 (αr)

This error case is found with Ddisasm when reassembling

x86-64 400.perlbench binary, which was compiled by

GCC and ld with -nopie and -Os options. Ddisasm failed to

identify the absolute address 0x4e47d0 as a symbolization

target even though the address falls into the .bss section.

A.3 E2 False Positive

mov eax, DWORD PTR [0x24+L8056300] (αc)

804cdf3: mov eax, DWORD PTR [0x8056324] (β)

mov eax, DWORD PTR [L8056324] (αr)

This error case is found with Ramblr when reassembling

x86 pinky binary, which was compiled by GCC and gold

with -nopie and -Ofast options. Ramblr failed to identify

the composite relocatable expression 0x24+L8056300 and

created a false relocation expression L8056324.

A.4 E2 False Negative

movabs rax, L9f7520+0xffffffff (αc)

0x4971c7: movabs rax, 0x1009f751f (β)

movabs rax, 0x1009f751f (αr)

This error case is found with Ddisasm when reassembling

x86-64 403.gcc binary, which was compiled by GCC and ld

with -nopie and -O1 options. Ddisasm failed to identify the

relocatable expression L9f7520+0xffffffff and classified

0x1009f751f as an immediate since the value points outside

the .bss section.

A.5 E3 False Positive

lea rcx, QWORD PTR [rip+Lbc60] (αc)

23c2: lea rcx, QWORD PTR [rip+0x9897] ; 0xbc60 (β)

lea rcx, QWORD PTR [rip+0x3e60+L7e00] (αr)

Thie error case is found with RetroWrite when reassembling

x86-64 mktemp binary, which was compiled by GCC and gold

with -pie and -O0 options. RetroWrite failed to identify the

relocatable expression Lbc60 and created a false relocatable

expression because it was not able to create a symbol at

0xbc60.

A.6 E3 False Negative

lea rsi, QWORD PTR [rip+La6db6] (αc)

a6daa: lea rsi, QWORD PTR [rip+5] ; 0xa6db6 (β)

lea rsi, QWORD PTR [rip+5] (αr)

This error case is found with RetroWrite when reassembling

x86 size binary, which was compiled by Clang and gold

with -pie and -Os options. RetroWrite failed to identify the

relative address 0xa6db6 as a symbolization target.

A.7 E4 False Positive

mov r13d, DWORD PTR [rip+0x24efc+L92aa60] (αc)

0x409586: mov r13d, [rip+0x5463cf] ; 0x94f95c in .bss (β)

mov r13d, [rip+L94f95c] (αr)

This error case is found with Ddisasm when reassembling

x86-64 445.gobmk binary, which was compiled by GCC and

gold with -nopie and -Ofast options. Ddisasm failed to

identify the relocatable expression 0x24efc+L92aa60 and

created a false label at a different data area.

A.8 E4 False Negative

lea r12, [rip-0x22d00+L34140] (αc)

c26b: lea r12, [rip+0x51ce] ; 0x11440 in .text (β)

lea r12, [rip+0x51ce] (αr)

This error case is found with Ddisasm when reassembling



x86-64 434.zeusmp binary, which was compiled by Clang

and gold with -pie and -Os options. Ddisasm failed to

identify the relocatable expression -0x22d00+L34140, which

falls into the .text section.

A.9 E5 False Positive

.long L95eb8@GOTOFF (αc)

c5fe4: c4 5e f9 ff (β)

.long Le4b5-L785f1 (αr)

This error case is found with Ddisasm when reassembling

x86 nm-new binary, which was compiled by GCC and gold

with -pie and -O2 options. Ddisasm failed to identify

the relocatable expression L95eb8@GOTOFF and created a

label-relative offset Le4b5-L785f1 at 0x1dfe4.

A.10 E5 False Negative

lea eax, [ebx+L194bc@GOTOFF] (αc)

0x120ce: lea eax, [ebx-0x8b44] ;ebx holds .got addr. (β)

lea eax, [ebx-0x8b44] (αr)

This error case is found with Ddisasm when reassembling

x86 ls binary, which was compiled by GCC and ld with -pie

and -O1 options. Ddisasm failed to identify the relocatable

expression -0x8b44 as a symbolization target because it

was not able to realize that the ebx register holds the GOT

address, 0x22000. Hence, ebx-0x8b44 refers to the address

0x194bc (L194bc), which falls into the .rodata section.

A.11 E6 False Positive

push DWORD PTR [ebx+0x2c+L1e2e0@GOTOFF] (αc)

c63d: push DWORD PTR [ebx+0x30c] ; 0x1e30c (β)

push DWORD PTR [ebx+L1e30c@GOTOFF] (αr)

This error case is found with Ddisasm when reassembling

x86 touch binary, which was compiled by GCC and ld

with -pie and -O3 options. Ddisasm failed to identify the

relocatable expression 0x2c+L1e2e0@GOTOFF and created an

atomic label L1e30c@GOTOFF.

A.12 E6 False Negative

lea eax, DWORD PTR [ebx+4+L171e0@GOTOFF] (αc)

1c7c: lea eax, DWORD PTR [ebx+0x1e4] ;0x171e4 (β)

lea eax, DWORD PTR [ebx+0x1e4] (αr)

This error is found with Ddisasm when reassembling x86

stty binary, which was compiled by GCC and ld with -pie

and -O3 options. Ddisasm failed to identify the relocatable

expression 4+L171e0@GOTOFF because it was not able to

create a symbol at 0x171e4.

A.13 E7 False Positive

L3c75cc:

(αc).long L2ca3f0-L3c75cc

.long L2ca758-L3c75cc

0x3c75cc: 24 2e f0 ff
(β)

0x3c75d0: 8c 31 f0 ff

L3c75cc:

(αr).long L2c8204-L3c53e0 ; E7FP

.long L2ca758-L3c75cc

This error case is found with Ddisasm when reassembling

x86-64 403.gcc binary, which was compiled by GCC

and gold with -pie and -O3 options. Ddisasm symbol-

ized the relocatable expression L2ca3f0-L3c75cc to

L2c8204-L3c53e0, causing a false positive.

A.14 E7 False Negative

L5b40c:

(αc).long L251df-L5b40c

.long L26b94-L5b40c

0x5b40c: d3 9d fc ff
(β)

0x5b410: 88 b7 fc ff

L5b40c:

(αr)
.long L251df-L5b40c

L5b410:

.byte 0x88

This error case is found with RetroWrite when reassembling

x86-64 readelf binary, which was compiled by Clang and

ld with -pie and -O1 options. RetroWrite failed to identify

the relocatable expressions located at 0x5b410.

A.15 E8 False Positive

add [ebp-0xa0], 0x20000000 (αc)

0x805be86: add [ebp-0xa0], 0x20000000 (β)

add [ebp-0xa0], L20000000 (αr)

This error case is found with Ramblr when reassembling x86

434.zeusmp binary, which was compiled by Clang and gold

with -no-pie and -Os options. Ramblr falsely symbolized

the immediate 0x20000000 since the value falls into the

.bss section.
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